Skip to content

Commit 4e249db

Browse files
fixed readme
1 parent 63be37d commit 4e249db

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

README.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# 🏦 LendingClub ML App
1+
# LendingClub ML App
22

33
[![Python](https://img.shields.io/badge/Python-3.9+-blue.svg)](https://python.org)
44
[![Docker](https://img.shields.io/badge/Docker-Ready-2496ED.svg)](https://docker.com)
@@ -7,17 +7,17 @@
77

88
> A comprehensive machine learning application for predicting loan defaults and optimizing investment portfolios using the LendingClub dataset.
99
10-
## 🎯 Project Overview
10+
## Project Overview
1111

1212
This project demonstrates advanced machine learning techniques applied to financial risk assessment. The application trains multiple classification models on historical LendingClub loan data to predict default probabilities, then uses these predictions to construct an IRR-optimized investment portfolio.
1313

1414
### Key Features
1515

16-
- **🤖 Multiple ML Models**: 8+ different algorithms including Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks
17-
- **📊 Interactive Dashboard**: Real-time visualization of loan data, model performance, and portfolio optimization
18-
- **💰 Portfolio Optimization**: IRR-based portfolio construction with customizable investment criteria
19-
- **🔮 Live Predictions**: Real-time loan default predictions via REST API
20-
- **📈 Advanced Analytics**: Comprehensive EDA with interactive choropleth maps and statistical analysis
16+
- **Multiple ML Models**: 8+ different algorithms including Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks
17+
- **Interactive Dashboard**: Real-time visualization of loan data, model performance, and portfolio optimization
18+
- **Portfolio Optimization**: IRR-based portfolio construction with customizable investment criteria
19+
- **Live Predictions**: Real-time loan default predictions via REST API
20+
- **Advanced Analytics**: Comprehensive EDA with interactive choropleth maps and statistical analysis
2121

2222
### Business Impact
2323

@@ -26,7 +26,7 @@ This project demonstrates advanced machine learning techniques applied to financ
2626
- **1.51% and 0.99% alpha** over baseline for 36-month and 60-month loans respectively
2727
- **Statistically significant** results at 1% confidence level
2828

29-
## 🚀 Quick Start
29+
## Quick Start
3030

3131
### Prerequisites
3232

@@ -76,7 +76,7 @@ python app.py
7676
- **Backend API**: http://localhost:5000
7777
- **API Documentation**: http://localhost:5000/api/v1/predict
7878

79-
## 📊 Application Screenshots
79+
## Application Screenshots
8080

8181
### 1. Interactive Choropleth Map - Loan Default Rates by State
8282
<div align="center">
@@ -179,18 +179,18 @@ LendingClub_ML_App/
179179
4. Push to the branch (`git push origin feature/amazing-feature`)
180180
5. Open a Pull Request
181181

182-
## 📚 Resources
182+
## Resources
183183

184184
- **Dataset**: [LendingClub 2007-2020Q1](https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1)
185185
- **Blog Post**: [Predicting Loan Defaults using ML](https://nycdatascience.com/blog/student-works/predicting-loan-defaults-using-machine-learning-classification-models/)
186186
- **Video Presentation**: [YouTube](https://www.youtube.com/watch?v=1U1pIe5-GZ0&ab_channel=NYCDataScienceAcademy)
187187
- **Presentation Slides**: [PDF](./presentation/NYCDSA_Capstone_Presentation_vF.pdf)
188188

189-
## 📄 License
189+
## License
190190

191191
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
192192

193-
## 👨‍💻 Author
193+
## Author
194194

195195
**Philippe Heitzmann**
196196
- Email: philheitz6[at]gmail[dot]com

0 commit comments

Comments
 (0)