|
| 1 | +import numpy as np |
| 2 | +import tensorflow as tf |
| 3 | +import tensorflow.keras as keras |
| 4 | +from tensorflow.keras.optimizers import Adam |
| 5 | +import tensorflow_probability as tfp |
| 6 | +from memory import PPOMemory |
| 7 | +from networks import ActorNetwork, CriticNetwork |
| 8 | + |
| 9 | + |
| 10 | +class Agent: |
| 11 | + def __init__(self, n_actions, input_dims, gamma=0.99, alpha=0.0003, |
| 12 | + gae_lambda=0.95, policy_clip=0.2, batch_size=64, |
| 13 | + n_epochs=10, chkpt_dir='models/'): |
| 14 | + self.gamma = gamma |
| 15 | + self.policy_clip = policy_clip |
| 16 | + self.n_epochs = n_epochs |
| 17 | + self.gae_lambda = gae_lambda |
| 18 | + self.chkpt_dir = chkpt_dir |
| 19 | + |
| 20 | + self.actor = ActorNetwork(n_actions) |
| 21 | + self.actor.compile(optimizer=Adam(learning_rate=alpha)) |
| 22 | + self.critic = CriticNetwork() |
| 23 | + self.critic.compile(optimizer=Adam(learning_rate=alpha)) |
| 24 | + self.memory = PPOMemory(batch_size) |
| 25 | + |
| 26 | + def store_transition(self, state, action, probs, vals, reward, done): |
| 27 | + self.memory.store_memory(state, action, probs, vals, reward, done) |
| 28 | + |
| 29 | + def save_models(self): |
| 30 | + print('... saving models ...') |
| 31 | + self.actor.save(self.chkpt_dir + 'actor') |
| 32 | + self.critic.save(self.chkpt_dir + 'critic') |
| 33 | + |
| 34 | + def load_models(self): |
| 35 | + print('... loading models ...') |
| 36 | + self.actor = keras.models.load_model(self.chkpt_dir + 'actor') |
| 37 | + self.critic = keras.models.load_model(self.chkpt_dir + 'critic') |
| 38 | + |
| 39 | + def choose_action(self, observation): |
| 40 | + state = tf.convert_to_tensor([observation]) |
| 41 | + |
| 42 | + probs = self.actor(state) |
| 43 | + dist = tfp.distributions.Categorical(probs) |
| 44 | + action = dist.sample() |
| 45 | + log_prob = dist.log_prob(action) |
| 46 | + value = self.critic(state) |
| 47 | + |
| 48 | + action = action.numpy()[0] |
| 49 | + value = value.numpy()[0] |
| 50 | + log_prob = log_prob.numpy()[0] |
| 51 | + |
| 52 | + return action, log_prob, value |
| 53 | + |
| 54 | + def learn(self): |
| 55 | + for _ in range(self.n_epochs): |
| 56 | + state_arr, action_arr, old_prob_arr, vals_arr,\ |
| 57 | + reward_arr, dones_arr, batches = \ |
| 58 | + self.memory.generate_batches() |
| 59 | + |
| 60 | + values = vals_arr |
| 61 | + advantage = np.zeros(len(reward_arr), dtype=np.float32) |
| 62 | + |
| 63 | + for t in range(len(reward_arr)-1): |
| 64 | + discount = 1 |
| 65 | + a_t = 0 |
| 66 | + for k in range(t, len(reward_arr)-1): |
| 67 | + a_t += discount*(reward_arr[k] + self.gamma*values[k+1] * ( |
| 68 | + 1-int(dones_arr[k])) - values[k]) |
| 69 | + discount *= self.gamma*self.gae_lambda |
| 70 | + advantage[t] = a_t |
| 71 | + |
| 72 | + for batch in batches: |
| 73 | + with tf.GradientTape(persistent=True) as tape: |
| 74 | + states = tf.convert_to_tensor(state_arr[batch]) |
| 75 | + old_probs = tf.convert_to_tensor(old_prob_arr[batch]) |
| 76 | + actions = tf.convert_to_tensor(action_arr[batch]) |
| 77 | + |
| 78 | + probs = self.actor(states) |
| 79 | + dist = tfp.distributions.Categorical(probs) |
| 80 | + new_probs = dist.log_prob(actions) |
| 81 | + |
| 82 | + critic_value = self.critic(states) |
| 83 | + |
| 84 | + critic_value = tf.squeeze(critic_value, 1) |
| 85 | + |
| 86 | + prob_ratio = tf.math.exp(new_probs - old_probs) |
| 87 | + weighted_probs = advantage[batch] * prob_ratio |
| 88 | + clipped_probs = tf.clip_by_value(prob_ratio, |
| 89 | + 1-self.policy_clip, |
| 90 | + 1+self.policy_clip) |
| 91 | + weighted_clipped_probs = clipped_probs * advantage[batch] |
| 92 | + actor_loss = -tf.math.minimum(weighted_probs, |
| 93 | + weighted_clipped_probs) |
| 94 | + actor_loss = tf.math.reduce_mean(actor_loss) |
| 95 | + |
| 96 | + returns = advantage[batch] + values[batch] |
| 97 | + # critic_loss = tf.math.reduce_mean(tf.math.pow( |
| 98 | + # returns-critic_value, 2)) |
| 99 | + critic_loss = keras.losses.MSE(critic_value, returns) |
| 100 | + |
| 101 | + actor_params = self.actor.trainable_variables |
| 102 | + actor_grads = tape.gradient(actor_loss, actor_params) |
| 103 | + critic_params = self.critic.trainable_variables |
| 104 | + critic_grads = tape.gradient(critic_loss, critic_params) |
| 105 | + self.actor.optimizer.apply_gradients( |
| 106 | + zip(actor_grads, actor_params)) |
| 107 | + self.critic.optimizer.apply_gradients( |
| 108 | + zip(critic_grads, critic_params)) |
| 109 | + |
| 110 | + self.memory.clear_memory() |
0 commit comments