3030*************************************************************************/
3131
3232#include "bcmath.h"
33+ #include "convert.h"
34+ #include "private.h"
3335#include <assert.h>
3436#include <stdbool.h>
3537#include <stddef.h>
3638
37- void bc_square_ex (bc_num n1 , bc_num * result , size_t scale_min ) {
38- bc_num square_ex = bc_square (n1 , scale_min );
39- bc_free_num (result );
40- * (result ) = square_ex ;
39+ static inline size_t bc_multiply_vector_ex (
40+ BC_VECTOR * * n1_vector , size_t n1_arr_size , BC_VECTOR * n2_vector , size_t n2_arr_size , BC_VECTOR * * result_vector )
41+ {
42+ size_t result_arr_size = n1_arr_size + n2_arr_size ;
43+ bc_multiply_vector (* n1_vector , n1_arr_size , n2_vector , n2_arr_size , * result_vector , result_arr_size );
44+
45+ /* Eliminate extra zeros because they increase the number of calculations. */
46+ while ((* result_vector )[result_arr_size - 1 ] == 0 ) {
47+ result_arr_size -- ;
48+ }
49+
50+ /* Swap n1_vector and result_vector. */
51+ BC_VECTOR * tmp = * n1_vector ;
52+ * n1_vector = * result_vector ;
53+ * result_vector = tmp ;
54+
55+ return result_arr_size ;
56+ }
57+
58+ static inline size_t bc_square_vector_ex (BC_VECTOR * * base_vector , size_t base_arr_size , BC_VECTOR * * result_vector )
59+ {
60+ return bc_multiply_vector_ex (base_vector , base_arr_size , * base_vector , base_arr_size , result_vector );
61+ }
62+
63+ /* Use "exponentiation by squaring". This is the fast path when the results are small. */
64+ static inline bc_num bc_fast_raise (
65+ const char * base_end , long exponent , size_t base_len , size_t power_len , size_t power_scale , size_t power_full_len )
66+ {
67+ BC_VECTOR base_vector = 0 ;
68+
69+ /* Convert to BC_VECTOR[] */
70+ bc_convert_to_vector (& base_vector , base_end , base_len );
71+
72+ while ((exponent & 1 ) == 0 ) {
73+ base_vector *= base_vector ;
74+ exponent >>= 1 ;
75+ }
76+
77+ /* copy base to power */
78+ BC_VECTOR power_vector = base_vector ;
79+ exponent >>= 1 ;
80+
81+ while (exponent > 0 ) {
82+ base_vector *= base_vector ;
83+ if ((exponent & 1 ) == 1 ) {
84+ power_vector *= base_vector ;
85+ }
86+ exponent >>= 1 ;
87+ }
88+
89+ bc_num power = bc_new_num_nonzeroed (power_len , power_scale );
90+ char * pptr = power -> n_value ;
91+ char * pend = pptr + power_full_len - 1 ;
92+
93+ while (pend >= pptr ) {
94+ * pend -- = power_vector % BASE ;
95+ power_vector /= BASE ;
96+ }
97+ return power ;
98+ }
99+
100+ /* Use "exponentiation by squaring". This is the standard path. */
101+ static bc_num bc_standard_raise (
102+ const char * base_end , long exponent , size_t base_len , size_t power_scale )
103+ {
104+ size_t base_arr_size = (base_len + BC_VECTOR_SIZE - 1 ) / BC_VECTOR_SIZE ;
105+ size_t max_power_arr_size = base_arr_size * exponent ;
106+
107+ /* The allocated memory area is reused on a rotational basis, so the same size is required. */
108+ BC_VECTOR * buf = safe_emalloc (max_power_arr_size * 3 , sizeof (BC_VECTOR ), 0 );
109+ BC_VECTOR * base_vector = buf ;
110+ BC_VECTOR * power_vector = base_vector + max_power_arr_size ;
111+ BC_VECTOR * tmp_result_vector = power_vector + max_power_arr_size ;
112+
113+ /* Convert to BC_VECTOR[] */
114+ bc_convert_to_vector (base_vector , base_end , base_len );
115+
116+ while ((exponent & 1 ) == 0 ) {
117+ base_arr_size = bc_square_vector_ex (& base_vector , base_arr_size , & tmp_result_vector );
118+ exponent >>= 1 ;
119+ }
120+
121+ /* copy base to power */
122+ size_t power_arr_size = base_arr_size ;
123+ for (size_t i = 0 ; i < base_arr_size ; i ++ ) {
124+ power_vector [i ] = base_vector [i ];
125+ }
126+ exponent >>= 1 ;
127+
128+ while (exponent > 0 ) {
129+ base_arr_size = bc_square_vector_ex (& base_vector , base_arr_size , & tmp_result_vector );
130+ if ((exponent & 1 ) == 1 ) {
131+ power_arr_size = bc_multiply_vector_ex (& power_vector , power_arr_size , base_vector , base_arr_size , & tmp_result_vector );
132+ }
133+ exponent >>= 1 ;
134+ }
135+
136+ /* Convert to bc_num */
137+ size_t power_leading_zeros = 0 ;
138+ size_t power_len ;
139+ size_t power_full_len = power_arr_size * BC_VECTOR_SIZE ;
140+ if (power_full_len > power_scale ) {
141+ power_len = power_full_len - power_scale ;
142+ } else {
143+ power_len = 1 ;
144+ power_leading_zeros = power_scale - power_full_len + 1 ;
145+ power_full_len = power_scale + 1 ;
146+ }
147+ bc_num power = bc_new_num_nonzeroed (power_len , power_scale );
148+
149+ char * pptr = power -> n_value ;
150+ char * pend = pptr + power_full_len - 1 ;
151+
152+ /* Pad with leading zeros if necessary. */
153+ while (power_leading_zeros > sizeof (uint32_t )) {
154+ bc_write_bcd_representation (0 , pptr );
155+ pptr += sizeof (uint32_t );
156+ power_leading_zeros -= sizeof (uint32_t );
157+ }
158+ for (size_t i = 0 ; i < power_leading_zeros ; i ++ ) {
159+ * pptr ++ = 0 ;
160+ }
161+
162+ size_t i = 0 ;
163+ while (i < power_arr_size - 1 ) {
164+ #if BC_VECTOR_SIZE == 4
165+ bc_write_bcd_representation (power_vector [i ], pend - 3 );
166+ pend -= 4 ;
167+ #else
168+ bc_write_bcd_representation (power_vector [i ] / 10000 , pend - 7 );
169+ bc_write_bcd_representation (power_vector [i ] % 10000 , pend - 3 );
170+ pend -= 8 ;
171+ #endif
172+ i ++ ;
173+ }
174+
175+ while (pend >= pptr ) {
176+ * pend -- = power_vector [i ] % BASE ;
177+ power_vector [i ] /= BASE ;
178+ }
179+
180+ efree (buf );
181+
182+ return power ;
41183}
42184
43185/* Raise "base" to the "exponent" power. The result is placed in RESULT.
44186 Maximum exponent is LONG_MAX. If a "exponent" is not an integer,
45187 only the integer part is used. */
46188bool bc_raise (bc_num base , long exponent , bc_num * result , size_t scale ) {
47- bc_num temp , power ;
48189 size_t rscale ;
49- size_t pwrscale ;
50- size_t calcscale ;
51190 bool is_neg ;
52191
53192 /* Special case if exponent is a zero. */
@@ -74,43 +213,47 @@ bool bc_raise(bc_num base, long exponent, bc_num *result, size_t scale) {
74213 return !is_neg ;
75214 }
76215
77- /* Set initial value of temp. */
78- power = bc_copy_num (base );
79- pwrscale = base -> n_scale ;
80- while ((exponent & 1 ) == 0 ) {
81- pwrscale = 2 * pwrscale ;
82- bc_square_ex (power , & power , pwrscale );
83- exponent = exponent >> 1 ;
216+ size_t base_len = base -> n_len + base -> n_scale ;
217+ size_t power_len = base -> n_len * exponent ;
218+ size_t power_scale = base -> n_scale * exponent ;
219+ size_t power_full_len = power_len + power_scale ;
220+
221+ sign power_sign ;
222+ if (base -> n_sign == MINUS && (exponent & 1 ) == 1 ) {
223+ power_sign = MINUS ;
224+ } else {
225+ power_sign = PLUS ;
84226 }
85- temp = bc_copy_num (power );
86- calcscale = pwrscale ;
87- exponent = exponent >> 1 ;
88227
89- /* Do the calculation. */
90- while (exponent > 0 ) {
91- pwrscale = 2 * pwrscale ;
92- bc_square_ex (power , & power , pwrscale );
93- if ((exponent & 1 ) == 1 ) {
94- calcscale = pwrscale + calcscale ;
95- bc_multiply_ex (temp , power , & temp , calcscale );
96- }
97- exponent = exponent >> 1 ;
228+ const char * base_end = base -> n_value + base_len - 1 ;
229+
230+ bc_num power ;
231+ if (base_len <= BC_VECTOR_SIZE && power_full_len <= BC_VECTOR_SIZE * 2 ) {
232+ power = bc_fast_raise (base_end , exponent , base_len , power_len , power_scale , power_full_len );
233+ } else {
234+ power = bc_standard_raise (base_end , exponent , base_len , power_scale );
235+ }
236+
237+ _bc_rm_leading_zeros (power );
238+ if (bc_is_zero (power )) {
239+ power -> n_sign = PLUS ;
240+ power -> n_scale = 0 ;
241+ } else {
242+ power -> n_sign = power_sign ;
98243 }
99244
100245 /* Assign the value. */
101246 if (is_neg ) {
102- if (bc_divide (BCG (_one_ ), temp , result , rscale ) == false) {
103- bc_free_num (& temp );
247+ if (bc_divide (BCG (_one_ ), power , result , rscale ) == false) {
104248 bc_free_num (& power );
105249 return false;
106250 }
107- bc_free_num (& temp );
251+ bc_free_num (& power );
108252 } else {
109253 bc_free_num (result );
110- * result = temp ;
254+ * result = power ;
111255 (* result )-> n_scale = MIN (scale , (* result )-> n_scale );
112256 }
113- bc_free_num (& power );
114257 return true;
115258}
116259
0 commit comments