|
| 1 | +<?php |
| 2 | + |
| 3 | +namespace Phperf\Pipeline\Vector; |
| 4 | + |
| 5 | +class KalmanFilter implements VectorProcessor |
| 6 | +{ |
| 7 | + /** @var float|int Process noise (how variable data is expected to come) */ |
| 8 | + public $processNoise; |
| 9 | + /** @var float|int Measurement noise (how strong is ) */ |
| 10 | + public $measurementNoise; |
| 11 | + |
| 12 | + public $stateVector; |
| 13 | + public $controlVector; |
| 14 | + public $measurementVector; |
| 15 | + public $cov; |
| 16 | + public $x; |
| 17 | + |
| 18 | + |
| 19 | + /** |
| 20 | + * Create 1-dimensional kalman filter |
| 21 | + * @param float|int $processNoise Process noise |
| 22 | + * @param float|int $measurementNoise Measurement noise |
| 23 | + * @param float|int $stateVector State vector |
| 24 | + * @param float|int $controlVector Control vector |
| 25 | + * @param float|int $measurementVector Measurement vector |
| 26 | + * @param $cov |
| 27 | + * @param $x |
| 28 | + */ |
| 29 | + function __construct($processNoise = 1, $measurementNoise = 1, $stateVector = 1, $controlVector = 0, $measurementVector = 1, $cov = null, $x = null) |
| 30 | + { |
| 31 | + $this->processNoise = $processNoise; // noise power desirable |
| 32 | + $this->measurementNoise = $measurementNoise; // noise power estimated |
| 33 | + |
| 34 | + $this->stateVector = $stateVector; |
| 35 | + $this->controlVector = $controlVector; |
| 36 | + $this->measurementVector = $measurementVector; |
| 37 | + |
| 38 | + $this->cov = $cov; |
| 39 | + $this->x = $x; // estimated signal without noise |
| 40 | + } |
| 41 | + |
| 42 | + /** |
| 43 | + * Filter a new value |
| 44 | + * @param float $value Measurement |
| 45 | + * @param float|int $u Control |
| 46 | + * @return float |
| 47 | + */ |
| 48 | + function value($value, $u = 0) |
| 49 | + { |
| 50 | + if (null === $this->x) { |
| 51 | + $this->x = (1 / $this->measurementVector) * $value; |
| 52 | + $this->cov = (1 / $this->measurementVector) * $this->measurementNoise * (1 / $this->measurementVector); |
| 53 | + } else { |
| 54 | + // Compute prediction |
| 55 | + $predX = ($this->stateVector * $this->x) + ($this->controlVector * $u); |
| 56 | + $predCov = (($this->stateVector * $this->cov) * $this->stateVector) + $this->processNoise; |
| 57 | + |
| 58 | + // Kalman gain |
| 59 | + $K = $predCov * $this->measurementVector * |
| 60 | + (1 / (($this->measurementVector * $predCov * $this->measurementVector) + $this->measurementNoise)); |
| 61 | + |
| 62 | + // Correction |
| 63 | + $this->x = $predX + $K * ($value - ($this->measurementVector * $predX)); |
| 64 | + $this->cov = $predCov - ($K * $this->measurementVector * $predCov); |
| 65 | + } |
| 66 | + |
| 67 | + return $this->x; |
| 68 | + } |
| 69 | +} |
0 commit comments