1313for online training.
1414
1515The core estimation code is based on the `onlineldavb.py script
16- <https://github.com/blei-lab/onlineldavb/blob/master/onlineldavb.py>`_, by `Hoffman, Blei, Bach:
16+ <https://github.com/blei-lab/onlineldavb/blob/master/onlineldavb.py>`_, by
17+ `Matthew D. Hoffman, David M. Blei, Francis Bach:
1718Online Learning for Latent Dirichlet Allocation, NIPS 2010
18- <https://scholar.google.com/citations?hl=en&user=IeHKeGYAAAAJ&view_op=list_works >`_.
19+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf >`_.
1920
2021The algorithm:
2122
@@ -199,7 +200,7 @@ def blend(self, rhot, other, targetsize=None):
199200 The number of documents is stretched in both state objects, so that they are of comparable magnitude.
200201 This procedure corresponds to the stochastic gradient update from
201202 `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
202- <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_, see equations (5) and (9).
203+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_, see equations (5) and (9).
203204
204205 Parameters
205206 ----------
@@ -311,8 +312,9 @@ def load(cls, fname, *args, **kwargs):
311312
312313
313314class LdaModel (interfaces .TransformationABC , basemodel .BaseTopicModel ):
314- """Train and use Online Latent Dirichlet Allocation (OLDA) models as presented in
315- `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation" <https://www.di.ens.fr/~fbach/mdhnips2010.pdf>`_.
315+ """Train and use Online Latent Dirichlet Allocation models as presented in
316+ `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
317+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf>`_.
316318
317319 Examples
318320 -------
@@ -395,12 +397,12 @@ def __init__(self, corpus=None, num_topics=100, id2word=None,
395397 decay : float, optional
396398 A number between (0.5, 1] to weight what percentage of the previous lambda value is forgotten
397399 when each new document is examined. Corresponds to Kappa from
398- `Matthew D. Hoffman, David M. Blei, Francis Bach:
399- "Online Learning for Latent Dirichlet Allocation NIPS'10" <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_.
400+ `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
401+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_.
400402 offset : float, optional
401403 Hyper-parameter that controls how much we will slow down the first steps the first few iterations.
402- Corresponds to Tau_0 from `Matthew D. Hoffman, David M. Blei, Francis Bach:
403- "Online Learning for Latent Dirichlet Allocation NIPS'10" <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_.
404+ Corresponds to Tau_0 from `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
405+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_.
404406 eval_every : int, optional
405407 Log perplexity is estimated every that many updates. Setting this to one slows down training by ~2x.
406408 iterations : int, optional
@@ -643,7 +645,7 @@ def inference(self, chunk, collect_sstats=False):
643645 """Given a chunk of sparse document vectors, estimate gamma (parameters controlling the topic weights)
644646 for each document in the chunk.
645647
646- This function does not modify the model The whole input chunk of document is assumed to fit in RAM;
648+ This function does not modify the model. The whole input chunk of document is assumed to fit in RAM;
647649 chunking of a large corpus must be done earlier in the pipeline. Avoids computing the `phi` variational
648650 parameter directly using the optimization presented in
649651 `Lee, Seung: Algorithms for non-negative matrix factorization"
@@ -863,8 +865,8 @@ def update(self, corpus, chunksize=None, decay=None, offset=None,
863865 This update also supports updating an already trained model with new documents; the two models are then merged
864866 in proportion to the number of old vs. new documents. This feature is still experimental for non-stationary
865867 input streams. For stationary input (no topic drift in new documents), on the other hand, this equals the
866- online update of `Matthew D. Hoffman, David M. Blei, Francis Bach:
867- "Online Learning for Latent Dirichlet Allocation NIPS'10" <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_.
868+ online update of `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
869+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_
868870 and is guaranteed to converge for any `decay` in (0.5, 1.0). Additionally, for smaller corpus sizes, an
869871 increasing `offset` may be beneficial (see Table 1 in the same paper).
870872
@@ -878,12 +880,12 @@ def update(self, corpus, chunksize=None, decay=None, offset=None,
878880 decay : float, optional
879881 A number between (0.5, 1] to weight what percentage of the previous lambda value is forgotten
880882 when each new document is examined. Corresponds to Kappa from
881- `Matthew D. Hoffman, David M. Blei, Francis Bach:
882- "Online Learning for Latent Dirichlet Allocation NIPS'10" <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_.
883+ `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
884+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_.
883885 offset : float, optional
884886 Hyper-parameter that controls how much we will slow down the first steps the first few iterations.
885- Corresponds to Tau_0 from `Matthew D. Hoffman, David M. Blei, Francis Bach:
886- "Online Learning for Latent Dirichlet Allocation NIPS'10" <https://www.di.ens.fr/~fbach/mdhnips2010 .pdf>`_.
887+ Corresponds to Tau_0 from `Hoffman et al. :"Online Learning for Latent Dirichlet Allocation"
888+ <https://papers.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper .pdf>`_.
887889 passes : int, optional
888890 Number of passes through the corpus during training.
889891 update_every : int, optional
0 commit comments