Skip to content

Commit a2a69a9

Browse files
committed
Implement reference for langevin with openmm
1 parent 69752b2 commit a2a69a9

File tree

1 file changed

+149
-0
lines changed

1 file changed

+149
-0
lines changed

test_langevin_step_openmm.py

Lines changed: 149 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,149 @@
1+
import openmm.app as app
2+
import mdtraj as md
3+
import openmm.unit as unit
4+
import jax.numpy as jnp
5+
import jax
6+
from dmff import Hamiltonian, NeighborList
7+
from scipy.constants import physical_constants
8+
from tqdm import trange
9+
10+
if __name__ == '__main__':
11+
init_pdb = app.PDBFile("./files/AD_c7eq.pdb")
12+
temp_as_unit = 300 * unit.kelvin
13+
temp = temp_as_unit.value_in_unit(unit.kelvin)
14+
15+
# The unit system is weird when you have 1 / ps, so we specify it in ps and then convert back to seconds
16+
gamma_in_ps = 1
17+
gamma_as_unit = gamma_in_ps / unit.picosecond
18+
gamma = gamma_in_ps * unit.picosecond
19+
gamma = gamma.value_in_unit(unit.second)
20+
21+
dt_as_unit = 1.0 * unit.femtosecond
22+
dt_in_ps = dt_as_unit.value_in_unit(unit.picosecond)
23+
dt = dt_as_unit.value_in_unit(unit.second)
24+
25+
kbT = 1.380649 * 6.02214076 * 1e-3 * temp
26+
27+
mdtraj_topology = md.Topology.from_openmm(init_pdb.topology)
28+
29+
# Construct the mass matrix
30+
mass = [a.element.mass.value_in_unit(unit.dalton) for a in init_pdb.topology.atoms()]
31+
new_mass = []
32+
for mass_ in mass:
33+
for _ in range(3):
34+
new_mass.append(mass_)
35+
mass = jnp.array(new_mass)
36+
# Obtain xi
37+
xi = jnp.sqrt(2 * kbT / mass / gamma)
38+
39+
# Initialize the potential energy with amber forcefields
40+
ff = Hamiltonian('amber14/protein.ff14SB.xml', 'amber14/tip3p.xml')
41+
potentials = ff.createPotential(init_pdb.topology,
42+
nonbondedMethod=app.NoCutoff,
43+
nonbondedCutoff=1.0 * unit.nanometers,
44+
constraints=None,
45+
ewaldErrorTolerance=0.0005)
46+
# Create a box used when calling
47+
box = jnp.array([[50.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]])
48+
nbList = NeighborList(box, 4.0, potentials.meta["cov_map"])
49+
nbList.allocate(init_pdb.getPositions(asNumpy=True).value_in_unit(unit.nanometer))
50+
pairs = nbList.pairs
51+
52+
53+
@jax.jit
54+
def U(_x):
55+
"""
56+
Calling U by U(x, box, pairs, ff.paramset.parameters), x is [22, 3] and output the energy, if it is batched, use vmap
57+
"""
58+
_U = potentials.getPotentialFunc()
59+
60+
return _U(_x.reshape(22, 3), box, pairs, ff.paramset.parameters)
61+
62+
63+
def dUdx_fn_unscaled(_x):
64+
return jax.grad(lambda _x: U(_x).sum())(_x)
65+
66+
67+
dUdx_fn_unscaled = jax.vmap(dUdx_fn_unscaled)
68+
dUdx_fn_unscaled = jax.jit(dUdx_fn_unscaled)
69+
70+
71+
@jax.jit
72+
def dUdx_fn(_x):
73+
return dUdx_fn_unscaled(_x) / mass / gamma
74+
75+
76+
@jax.jit
77+
def step_langevin(_x, _v, _key):
78+
alpha = jnp.exp(-gamma_in_ps * dt_in_ps)
79+
f_scale = (1 - alpha) / gamma_in_ps
80+
new_v_det = alpha * _v + f_scale * -dUdx_fn_unscaled(_x) / mass
81+
new_v = new_v_det + jnp.sqrt(kbT * (1 - alpha ** 2) / mass) * jax.random.normal(_key, _x.shape)
82+
83+
return _x + dt_in_ps * new_v, new_v
84+
85+
86+
def step_langevin_units(_x, _v, _key):
87+
_x = unit.Quantity(_x.reshape(22, 3), unit.nanometer)
88+
_v = unit.Quantity(_v.reshape(22, 3), unit.nanometer / unit.picosecond)
89+
90+
alpha = jnp.exp(-gamma_as_unit * dt_as_unit)
91+
f_scale = (1 - alpha) / gamma_as_unit
92+
93+
grad = unit.Quantity(value=dUdx_fn_unscaled(_x.value_in_unit(unit.nanometer).reshape(1, 66)).reshape(22, 3),
94+
unit=unit.kilojoule_per_mole / unit.nanometer)
95+
mass_as_unit = unit.Quantity(mass.reshape(22, 3), unit.dalton)
96+
new_v_det = alpha * _v + f_scale * -grad / mass_as_unit
97+
98+
_rand = jax.random.normal(_key, _x.shape)
99+
100+
# we convert the unadjusted noise variance to SI units
101+
unadjusted_noise_variance = unit.BOLTZMANN_CONSTANT_kB * temp_as_unit * (1 - alpha ** 2) / mass_as_unit
102+
# to do this, we need to convert daltons to kg
103+
noise_scale_SI_units = 1 / physical_constants['unified atomic mass unit'][
104+
0] * unadjusted_noise_variance.value_in_unit(unit.joule / unit.dalton)
105+
106+
# in the end, we need to convert the noise back to nanometers
107+
# since we are working in SI units, our noise is in meters
108+
noise = unit.Quantity(jnp.sqrt(noise_scale_SI_units) * _rand, unit.meter / unit.second)
109+
110+
new_v = new_v_det + noise
111+
return ((_x + dt_as_unit * new_v).value_in_unit(unit.nanometer).reshape(1, 66),
112+
new_v.value_in_unit(unit.nanometer / unit.picosecond).reshape(1, 66))
113+
114+
115+
key = jax.random.PRNGKey(1)
116+
key, velocity_key = jax.random.split(key)
117+
steps = 100_000
118+
119+
_x = jnp.array(init_pdb.getPositions(asNumpy=True).value_in_unit(unit.nanometer)).reshape(1, -1)
120+
121+
# sample the initial velocities from the boltzmann distribution
122+
# again, we compare the velocities in the same way as we did with the positions
123+
_v_v1 = jax.random.normal(velocity_key, _x.shape) * jnp.sqrt(kbT / mass)
124+
125+
velocity_variance = unit.Quantity(1 / mass, unit=1 / unit.dalton) * unit.BOLTZMANN_CONSTANT_kB * unit.Quantity(temp, unit=unit.kelvin)
126+
# Although velocity+variance is of the unit J / Da = m^2 / s^2, openmm cannot handle this directly and we need to convert it
127+
velocity_variance_in_si = 1 / physical_constants['unified atomic mass unit'][
128+
0] * velocity_variance.value_in_unit(unit.joule / unit.dalton)
129+
# velocity_variance_in_si = unit.Quantity(velocity_variance_in_si, unit.meter / unit.second)
130+
131+
_v_v2 = jnp.sqrt(velocity_variance_in_si) * jax.random.normal(velocity_key, _x.shape)
132+
_v_v2 = unit.Quantity(_v_v2, unit.meter / unit.second).value_in_unit(unit.nanometer / unit.picosecond)
133+
134+
assert jnp.allclose(_v_v1, _v_v2), "Initial velocities are not the same!"
135+
136+
_v = _v_v1
137+
138+
for i in trange(steps):
139+
key, iter_key = jax.random.split(key)
140+
_x_v1, _v_v1 = step_langevin(_x, _v, iter_key)
141+
_x_v2, _v_v2 = step_langevin_units(_x, _v, iter_key)
142+
143+
assert jnp.allclose(_x_v1, _x_v2), "Positions are not the same!"
144+
assert jnp.allclose(_v_v1, _v_v2), "Velocities are not the same!"
145+
146+
_x = _x_v1
147+
_v = _v_v1
148+
149+
print('All tests passed!')

0 commit comments

Comments
 (0)