@@ -141,61 +141,49 @@ def test_name_heuristics():
141
141
142
142
143
143
def test_performance_b64 ():
144
- rand_arr_1 = np .random .random (1000000 )
145
- rand_arr_2 = np .random .random (1000000 )
146
- raw_arr_1 = rand_arr_1 .tolist ()
147
- raw_arr_2 = rand_arr_2 .tolist ()
148
- b64_arr_1 = b64 (rand_arr_1 )
149
- b64_arr_2 = b64 (rand_arr_2 )
144
+ np_arr_1 = np .random .random (1000000 )
145
+ np_arr_2 = np .random .random (1000000 )
150
146
151
147
# Test the performance of the base64 arrays
152
- b64_start = time .time ()
153
- fig = px .scatter (x = b64_arr_1 , y = b64_arr_2 , width = 800 , height = 800 )
148
+ np_arr_start = time .time ()
149
+ fig = px .scatter (x = np_arr_1 , y = np_arr_2 , width = 800 , height = 800 )
154
150
fig .update_layout (margin = dict (l = 0 , r = 0 , t = 0 , b = 0 ))
155
- b64_time_elapsed = time .time () - b64_start
151
+ np_arr_time_elapsed = time .time () - np_arr_start
156
152
157
153
# Test the performance of the raw arrays
158
- raw_start = time .time ()
159
- fig = px .scatter (x = raw_arr_1 , y = raw_arr_2 , width = 800 , height = 800 )
154
+ list_start = time .time ()
155
+ fig = px .scatter (x = np_arr_1 . tolist () , y = np_arr_2 . tolist () , width = 800 , height = 800 )
160
156
fig .update_layout (margin = dict (l = 0 , r = 0 , t = 0 , b = 0 ))
161
- raw_time_elapsed = time .time () - raw_start
157
+ list_time_elapsed = time .time () - list_start
162
158
163
159
# b64 should be faster than raw
164
- assert (b64_time_elapsed / raw_time_elapsed ) < 0.7
160
+ assert (np_arr_time_elapsed / list_time_elapsed ) < 0.7
165
161
166
162
167
163
def test_size_performance_b64_uint8 ():
168
- rand_arr_1 = np .random .randint (0 , high = 254 , size = 100000 , dtype = "uint8" )
169
- rand_arr_2 = np .random .randint (0 , high = 254 , size = 100000 , dtype = "uint8" )
170
- raw_arr_1 = rand_arr_1 .tolist ()
171
- raw_arr_2 = rand_arr_2 .tolist ()
172
- b64_arr_1 = b64 (rand_arr_1 )
173
- b64_arr_2 = b64 (rand_arr_2 )
164
+ np_arr_1 = np .random .randint (0 , high = 254 , size = 100000 , dtype = "uint8" )
165
+ np_arr_2 = np .random .randint (0 , high = 254 , size = 100000 , dtype = "uint8" )
174
166
175
167
# Compare the size of figures with b64 arrays and raw arrays
176
- fig_b64 = px .scatter (x = b64_arr_1 , y = b64_arr_2 )
177
- size_b64 = fig_b64 .to_json ().__sizeof__ ()
178
- fig_raw = px .scatter (x = raw_arr_1 , y = raw_arr_2 )
179
- size_raw = fig_raw .to_json ().__sizeof__ ()
168
+ fig_np_arr = px .scatter (x = np_arr_1 , y = np_arr_2 )
169
+ size_np_arr = fig_np_arr .to_json ().__sizeof__ ()
170
+ fig_list = px .scatter (x = np_arr_1 . tolist () , y = np_arr_2 . tolist () )
171
+ size_list = fig_list .to_json ().__sizeof__ ()
180
172
181
- assert size_b64 / size_raw < 0.85
173
+ assert size_list - size_np_arr > 250000
182
174
183
175
184
176
def test_size_performance_b64_float32 ():
185
- rand_arr_1 = np .random .random (100000 ).astype ("float32" )
186
- rand_arr_2 = np .random .random (100000 ).astype ("float32" )
187
- raw_arr_1 = rand_arr_1 .tolist ()
188
- raw_arr_2 = rand_arr_2 .tolist ()
189
- b64_arr_1 = b64 (rand_arr_1 )
190
- b64_arr_2 = b64 (rand_arr_2 )
177
+ np_arr_1 = np .random .random (100000 ).astype ("float32" )
178
+ np_arr_2 = np .random .random (100000 ).astype ("float32" )
191
179
192
180
# Compare the size of figures with b64 arrays and raw arrays
193
- fig_b64 = px .scatter (x = b64_arr_1 , y = b64_arr_2 )
194
- size_b64 = fig_b64 .to_json ().__sizeof__ ()
195
- fig_raw = px .scatter (x = raw_arr_1 , y = raw_arr_2 )
196
- size_raw = fig_raw .to_json ().__sizeof__ ()
181
+ fig_np_arr = px .scatter (x = np_arr_1 , y = np_arr_2 )
182
+ size_np_arr = fig_np_arr .to_json ().__sizeof__ ()
183
+ fig_list = px .scatter (x = np_arr_1 . tolist () , y = np_arr_2 . tolist () )
184
+ size_list = fig_list .to_json ().__sizeof__ ()
197
185
198
- assert size_b64 / size_raw < 0.85
186
+ assert size_list - size_np_arr > 250000
199
187
200
188
201
189
def test_repeated_name ():
0 commit comments