Skip to content

Commit 9133986

Browse files
tqa236pmhatre1
authored andcommitted
CLN: Remove unused code (pandas-dev#57858)
1 parent a8c2df1 commit 9133986

File tree

1 file changed

+0
-58
lines changed

1 file changed

+0
-58
lines changed

pandas/core/array_algos/take.py

Lines changed: 0 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -164,64 +164,6 @@ def _take_nd_ndarray(
164164
return out
165165

166166

167-
def take_1d(
168-
arr: ArrayLike,
169-
indexer: npt.NDArray[np.intp],
170-
fill_value=None,
171-
allow_fill: bool = True,
172-
mask: npt.NDArray[np.bool_] | None = None,
173-
) -> ArrayLike:
174-
"""
175-
Specialized version for 1D arrays. Differences compared to `take_nd`:
176-
177-
- Assumes input array has already been converted to numpy array / EA
178-
- Assumes indexer is already guaranteed to be intp dtype ndarray
179-
- Only works for 1D arrays
180-
181-
To ensure the lowest possible overhead.
182-
183-
Note: similarly to `take_nd`, this function assumes that the indexer is
184-
a valid(ated) indexer with no out of bound indices.
185-
186-
Parameters
187-
----------
188-
arr : np.ndarray or ExtensionArray
189-
Input array.
190-
indexer : ndarray
191-
1-D array of indices to take (validated indices, intp dtype).
192-
fill_value : any, default np.nan
193-
Fill value to replace -1 values with
194-
allow_fill : bool, default True
195-
If False, indexer is assumed to contain no -1 values so no filling
196-
will be done. This short-circuits computation of a mask. Result is
197-
undefined if allow_fill == False and -1 is present in indexer.
198-
mask : np.ndarray, optional, default None
199-
If `allow_fill` is True, and the mask (where indexer == -1) is already
200-
known, it can be passed to avoid recomputation.
201-
"""
202-
if not isinstance(arr, np.ndarray):
203-
# ExtensionArray -> dispatch to their method
204-
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
205-
206-
if not allow_fill:
207-
return arr.take(indexer)
208-
209-
dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
210-
arr, indexer, fill_value, True, mask
211-
)
212-
213-
# at this point, it's guaranteed that dtype can hold both the arr values
214-
# and the fill_value
215-
out = np.empty(indexer.shape, dtype=dtype)
216-
217-
func = _get_take_nd_function(
218-
arr.ndim, arr.dtype, out.dtype, axis=0, mask_info=mask_info
219-
)
220-
func(arr, indexer, out, fill_value)
221-
222-
return out
223-
224-
225167
def take_2d_multi(
226168
arr: np.ndarray,
227169
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],

0 commit comments

Comments
 (0)