|
12 | 12 | "iterations_per_strategy", |
13 | 13 | "line_search", |
14 | 14 | "allow_out_of_iterations", |
15 | | - "LBFGS", |
16 | | - "LBFGSB", |
| 15 | + "L-BFGS", |
| 16 | + "L-BFGS-B", |
17 | 17 | "Newton", |
18 | 18 | "StochasticGradientDescent", |
19 | 19 | "box_constraints", |
|
23 | 23 | }, |
24 | 24 | { |
25 | 25 | "pointer": "/solver", |
26 | | - "doc": "Nonlinear solver type. If a list, list of solvers for ballback. Eg, ['Newton', 'L-BFGS', 'GradientDescent'] will solve using Newton, in case of failure will fallback to L-BFGS and eventually to GradientDescent", |
27 | | - "type": "list" |
28 | | - }, |
29 | | - { |
30 | | - "pointer": "/solver/*", |
31 | 26 | "default": "Newton", |
32 | 27 | "type": "string", |
33 | 28 | "options": [ |
34 | 29 | "Newton", |
35 | | - "ProjectedNewton", |
36 | | - "RegularizedNewton", |
37 | 30 | "DenseNewton", |
38 | 31 | "GradientDescent", |
39 | 32 | "StochasticGradientDescent", |
|
94 | 87 | "doc": "If false (default), an exception will be thrown when the nonlinear solver reaches the maximum number of iterations." |
95 | 88 | }, |
96 | 89 | { |
97 | | - "pointer": "/LBFGS", |
| 90 | + "pointer": "/L-BFGS", |
98 | 91 | "default": null, |
99 | 92 | "type": "object", |
100 | 93 | "optional": [ |
|
103 | 96 | "doc": "Options for LBFGS." |
104 | 97 | }, |
105 | 98 | { |
106 | | - "pointer": "/LBFGS/history_size", |
| 99 | + "pointer": "/L-BFGS/history_size", |
107 | 100 | "default": 6, |
108 | 101 | "type": "int", |
109 | 102 | "doc": "The number of corrections to approximate the inverse Hessian matrix." |
110 | 103 | }, |
111 | 104 | { |
112 | | - "pointer": "/LBFGSB", |
| 105 | + "pointer": "/L-BFGS-B", |
113 | 106 | "default": null, |
114 | 107 | "type": "object", |
115 | 108 | "optional": [ |
116 | 109 | "history_size" |
117 | 110 | ], |
118 | | - "doc": "Options for the boxed LBFGS." |
| 111 | + "doc": "Options for the boxed L-BFGS." |
119 | 112 | }, |
120 | 113 | { |
121 | | - "pointer": "/LBFGSB/history_size", |
| 114 | + "pointer": "/L-BFGS-B/history_size", |
122 | 115 | "default": 6, |
123 | 116 | "type": "int", |
124 | 117 | "doc": "The number of corrections to approximate the inverse Hessian matrix." |
|
174 | 167 | "doc": "Use PSD as fallback using second order solvers (i.e., Newton's method)." |
175 | 168 | }, |
176 | 169 | { |
177 | | - "pointer": "/ProjectedNewton", |
| 170 | + "pointer": "/StochasticGradientDescent", |
178 | 171 | "default": null, |
179 | 172 | "type": "object", |
180 | 173 | "optional": [ |
181 | | - "residual_tolerance" |
| 174 | + "erase_component_probability" |
182 | 175 | ], |
183 | | - "doc": "Options for projected Newton." |
| 176 | + "doc": "Options for Stochastic Gradient Descent." |
184 | 177 | }, |
185 | 178 | { |
186 | | - "pointer": "/ProjectedNewton/residual_tolerance", |
187 | | - "default": 1e-5, |
| 179 | + "pointer": "/StochasticGradientDescent/erase_component_probability", |
| 180 | + "default": 0.3, |
188 | 181 | "type": "float", |
189 | | - "doc": "Tolerance of the linear system residual. If residual is above, the direction is rejected." |
| 182 | + "doc": "Probability of erasing a component on the gradient for StochasticGradientDescent." |
190 | 183 | }, |
191 | 184 | { |
192 | | - "pointer": "/RegularizedNewton", |
193 | | - "default": null, |
| 185 | + "pointer": "/solver", |
| 186 | + "type": "list", |
| 187 | + "doc": "List of solvers for ballback. Eg, [{'type':'Newton'}, {'type':'L-BFGS'}, {'type':'GradientDescent'}] will solve using Newton, in case of failure will fallback to L-BFGS and eventually to GradientDescent" |
| 188 | + }, |
| 189 | + { |
| 190 | + "pointer": "/solver/*", |
| 191 | + "type": "object", |
| 192 | + "type_name": "Newton", |
| 193 | + "optional": [ |
| 194 | + "residual_tolerance" |
| 195 | + ], |
| 196 | + "doc": "Options for Newton." |
| 197 | + }, |
| 198 | + { |
| 199 | + "pointer": "/solver/*", |
| 200 | + "type": "object", |
| 201 | + "type_name": "ProjectedNewton", |
| 202 | + "optional": [ |
| 203 | + "residual_tolerance" |
| 204 | + ], |
| 205 | + "doc": "Options for Newton." |
| 206 | + }, |
| 207 | + { |
| 208 | + "pointer": "/solver/*", |
| 209 | + "type": "object", |
| 210 | + "type_name": "RegularizedNewton", |
| 211 | + "optional": [ |
| 212 | + "residual_tolerance", |
| 213 | + "reg_weight_min", |
| 214 | + "reg_weight_max", |
| 215 | + "reg_weight_inc" |
| 216 | + ], |
| 217 | + "doc": "Options for Newton." |
| 218 | + }, |
| 219 | + { |
| 220 | + "pointer": "/solver/*", |
| 221 | + "type": "object", |
| 222 | + "type_name": "DenseNewton", |
| 223 | + "optional": [ |
| 224 | + "residual_tolerance" |
| 225 | + ], |
| 226 | + "doc": "Options for Newton." |
| 227 | + }, |
| 228 | + { |
| 229 | + "pointer": "/solver/*", |
| 230 | + "type": "object", |
| 231 | + "type_name": "DenseProjectedNewton", |
| 232 | + "optional": [ |
| 233 | + "residual_tolerance" |
| 234 | + ], |
| 235 | + "doc": "Options for Newton." |
| 236 | + }, |
| 237 | + { |
| 238 | + "pointer": "/solver/*", |
194 | 239 | "type": "object", |
| 240 | + "type_name": "DenseRegularizedNewton", |
195 | 241 | "optional": [ |
196 | 242 | "residual_tolerance", |
197 | 243 | "reg_weight_min", |
198 | 244 | "reg_weight_max", |
199 | 245 | "reg_weight_inc" |
200 | 246 | ], |
201 | | - "doc": "Options for regularized Newton." |
| 247 | + "doc": "Options for Newton." |
202 | 248 | }, |
203 | 249 | { |
204 | | - "pointer": "/RegularizedNewton/residual_tolerance", |
| 250 | + "pointer": "/solver/*", |
| 251 | + "type": "object", |
| 252 | + "type_name": "GradientDescent", |
| 253 | + "doc": "Options for Gradient Descent." |
| 254 | + }, |
| 255 | + { |
| 256 | + "pointer": "/solver/*", |
| 257 | + "type": "object", |
| 258 | + "type_name": "StochasticGradientDescent", |
| 259 | + "optional": [ |
| 260 | + "erase_component_probability" |
| 261 | + ], |
| 262 | + "doc": "Options for Stochastic Gradient Descent." |
| 263 | + }, |
| 264 | + { |
| 265 | + "pointer": "/solver/*", |
| 266 | + "type": "object", |
| 267 | + "type_name": "L-BFGS", |
| 268 | + "optional": [ |
| 269 | + "erase_component_probability", |
| 270 | + "history_size" |
| 271 | + ], |
| 272 | + "doc": "Options for L-BFGS." |
| 273 | + }, |
| 274 | + { |
| 275 | + "pointer": "/solver/*", |
| 276 | + "type": "object", |
| 277 | + "type_name": "BFGS", |
| 278 | + "optional": [ |
| 279 | + "erase_component_probability" |
| 280 | + ], |
| 281 | + "doc": "Options for BFGS." |
| 282 | + }, |
| 283 | + { |
| 284 | + "pointer": "/solver/*/residual_tolerance", |
205 | 285 | "default": 1e-5, |
206 | 286 | "type": "float", |
207 | 287 | "doc": "Tolerance of the linear system residual. If residual is above, the direction is rejected." |
208 | 288 | }, |
209 | 289 | { |
210 | | - "pointer": "/RegularizedNewton/reg_weight_min", |
| 290 | + "pointer": "/solver/*/reg_weight_min", |
211 | 291 | "default": 1e-8, |
212 | 292 | "type": "float", |
213 | 293 | "doc": "Minimum regulariztion weight." |
214 | 294 | }, |
215 | 295 | { |
216 | | - "pointer": "/RegularizedNewton/reg_weight_max", |
| 296 | + "pointer": "/solver/*/reg_weight_max", |
217 | 297 | "default": 1e8, |
218 | 298 | "type": "float", |
219 | 299 | "doc": "Maximum regulariztion weight." |
220 | 300 | }, |
221 | 301 | { |
222 | | - "pointer": "/RegularizedNewton/reg_weight_inc", |
| 302 | + "pointer": "/solver/*/reg_weight_inc", |
223 | 303 | "default": 10, |
224 | 304 | "type": "float", |
225 | 305 | "doc": "Regulariztion weight increment." |
226 | 306 | }, |
227 | 307 | { |
228 | | - "pointer": "/StochasticGradientDescent", |
229 | | - "default": null, |
230 | | - "type": "object", |
231 | | - "optional": [ |
232 | | - "erase_component_probability" |
233 | | - ], |
234 | | - "doc": "Options for Stochastic Gradient Descent." |
235 | | - }, |
236 | | - { |
237 | | - "pointer": "/StochasticGradientDescent/erase_component_probability", |
| 308 | + "pointer": "/solver/*/erase_component_probability", |
238 | 309 | "default": 0.3, |
239 | 310 | "type": "float", |
240 | | - "doc": "Probability of erasing a component on the gradient for StochasticGradientDescent." |
| 311 | + "doc": "Probability of erasing a component on the gradient for stochastic solvers." |
| 312 | + }, |
| 313 | + { |
| 314 | + "pointer": "/solver/*/history_size", |
| 315 | + "default": 6, |
| 316 | + "type": "int", |
| 317 | + "doc": "The number of corrections to approximate the inverse Hessian matrix." |
241 | 318 | }, |
242 | 319 | { |
243 | 320 | "pointer": "/line_search", |
|
0 commit comments