|
| 1 | +// ADAM from "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION" |
| 2 | + |
| 3 | +#include "ADAM.hpp" |
| 4 | + |
| 5 | +namespace polysolve::nonlinear |
| 6 | +{ |
| 7 | + |
| 8 | + ADAM::ADAM(const json &solver_params, |
| 9 | + const bool is_stochastic, |
| 10 | + const double characteristic_length, |
| 11 | + spdlog::logger &logger) |
| 12 | + : Superclass(solver_params, characteristic_length, logger), is_stochastic_(is_stochastic) |
| 13 | + { |
| 14 | + std::string param_name = is_stochastic ? "StochasticADAM" : "ADAM"; |
| 15 | + alpha_ = solver_params[param_name]["alpha"]; |
| 16 | + beta_1_ = solver_params[param_name]["beta_1"]; |
| 17 | + beta_2_ = solver_params[param_name]["beta_2"]; |
| 18 | + epsilon_ = solver_params[param_name]["epsilon"]; |
| 19 | + if (is_stochastic) |
| 20 | + erase_component_probability_ = solver_params["StochasticADAM"]["erase_component_probability"]; |
| 21 | + } |
| 22 | + |
| 23 | + void ADAM::reset(const int ndof) |
| 24 | + { |
| 25 | + Superclass::reset(ndof); |
| 26 | + m_prev_ = Eigen::VectorXd::Zero(ndof); |
| 27 | + v_prev_ = Eigen::VectorXd::Zero(ndof); |
| 28 | + t_ = 0; |
| 29 | + } |
| 30 | + |
| 31 | + bool ADAM::compute_update_direction( |
| 32 | + Problem &objFunc, |
| 33 | + const TVector &x, |
| 34 | + const TVector &grad, |
| 35 | + TVector &direction) |
| 36 | + { |
| 37 | + if (m_prev_.size() == 0) |
| 38 | + m_prev_ = Eigen::VectorXd::Zero(x.size()); |
| 39 | + if (v_prev_.size() == 0) |
| 40 | + v_prev_ = Eigen::VectorXd::Zero(x.size()); |
| 41 | + |
| 42 | + TVector grad_modified = grad; |
| 43 | + |
| 44 | + if (is_stochastic_) |
| 45 | + { |
| 46 | + Eigen::VectorXd mask = (Eigen::VectorXd::Random(direction.size()).array() + 1.) / 2.; |
| 47 | + for (int i = 0; i < direction.size(); ++i) |
| 48 | + grad_modified(i) *= (mask(i) < erase_component_probability_) ? 0. : 1.; |
| 49 | + } |
| 50 | + |
| 51 | + TVector m = (beta_1_ * m_prev_) + ((1 - beta_1_) * grad_modified); |
| 52 | + TVector v = beta_2_ * v_prev_; |
| 53 | + for (int i = 0; i < v.size(); ++i) |
| 54 | + v(i) += (1 - beta_2_) * grad_modified(i) * grad_modified(i); |
| 55 | + |
| 56 | + m = m.array() / (1 - pow(beta_1_, t_)); |
| 57 | + v = v.array() / (1 - pow(beta_2_, t_)); |
| 58 | + |
| 59 | + direction = -alpha_ * m; |
| 60 | + for (int i = 0; i < v.size(); ++i) |
| 61 | + direction(i) /= sqrt(v(i) + epsilon_); |
| 62 | + |
| 63 | + ++t_; |
| 64 | + |
| 65 | + return true; |
| 66 | + } |
| 67 | +} // namespace polysolve::nonlinear |
0 commit comments