@@ -1445,12 +1445,16 @@ col_vals_gt(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
1445
1445
(i.e., no validation steps will be created for them).
1446
1446
1447
1447
A list with a combination of column names and tuples can be provided as well. This allows
1448
- for more complex segmentation scenarios. The following inputs are all valid:
1448
+ for more complex segmentation scenarios. The following inputs are both valid:
1449
1449
1450
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
1451
- in the `"region"` column and specific dates in the `"date"` column
1452
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
1453
- columns
1450
+ ```
1451
+ # Segments from all unique values in the `region` column
1452
+ # and specific dates in the `date` column
1453
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
1454
+
1455
+ # Segments from all unique values in the `region` and `date` columns
1456
+ segments=["region", "date"]
1457
+ ```
1454
1458
1455
1459
The segmentation is performed during interrogation, and the resulting validation steps will
1456
1460
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -1666,12 +1670,16 @@ col_vals_lt(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
1666
1670
(i.e., no validation steps will be created for them).
1667
1671
1668
1672
A list with a combination of column names and tuples can be provided as well. This allows
1669
- for more complex segmentation scenarios. The following inputs are all valid:
1673
+ for more complex segmentation scenarios. The following inputs are both valid:
1670
1674
1671
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
1672
- in the `"region"` column and specific dates in the `"date"` column
1673
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
1674
- columns
1675
+ ```
1676
+ # Segments from all unique values in the `region` column
1677
+ # and specific dates in the `date` column
1678
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
1679
+
1680
+ # Segments from all unique values in the `region` and `date` columns
1681
+ segments=["region", "date"]
1682
+ ```
1675
1683
1676
1684
The segmentation is performed during interrogation, and the resulting validation steps will
1677
1685
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -1887,12 +1895,16 @@ col_vals_ge(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
1887
1895
(i.e., no validation steps will be created for them).
1888
1896
1889
1897
A list with a combination of column names and tuples can be provided as well. This allows
1890
- for more complex segmentation scenarios. The following inputs are all valid:
1898
+ for more complex segmentation scenarios. The following inputs are both valid:
1891
1899
1892
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
1893
- in the `"region"` column and specific dates in the `"date"` column
1894
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
1895
- columns
1900
+ ```
1901
+ # Segments from all unique values in the `region` column
1902
+ # and specific dates in the `date` column
1903
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
1904
+
1905
+ # Segments from all unique values in the `region` and `date` columns
1906
+ segments=["region", "date"]
1907
+ ```
1896
1908
1897
1909
The segmentation is performed during interrogation, and the resulting validation steps will
1898
1910
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -2108,12 +2120,16 @@ col_vals_le(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
2108
2120
(i.e., no validation steps will be created for them).
2109
2121
2110
2122
A list with a combination of column names and tuples can be provided as well. This allows
2111
- for more complex segmentation scenarios. The following inputs are all valid:
2123
+ for more complex segmentation scenarios. The following inputs are both valid:
2112
2124
2113
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
2114
- in the `"region"` column and specific dates in the `"date"` column
2115
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
2116
- columns
2125
+ ```
2126
+ # Segments from all unique values in the `region` column
2127
+ # and specific dates in the `date` column
2128
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
2129
+
2130
+ # Segments from all unique values in the `region` and `date` columns
2131
+ segments=["region", "date"]
2132
+ ```
2117
2133
2118
2134
The segmentation is performed during interrogation, and the resulting validation steps will
2119
2135
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -2329,12 +2345,16 @@ col_vals_eq(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
2329
2345
(i.e., no validation steps will be created for them).
2330
2346
2331
2347
A list with a combination of column names and tuples can be provided as well. This allows
2332
- for more complex segmentation scenarios. The following inputs are all valid:
2348
+ for more complex segmentation scenarios. The following inputs are both valid:
2333
2349
2334
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
2335
- in the `"region"` column and specific dates in the `"date"` column
2336
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
2337
- columns
2350
+ ```
2351
+ # Segments from all unique values in the `region` column
2352
+ # and specific dates in the `date` column
2353
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
2354
+
2355
+ # Segments from all unique values in the `region` and `date` columns
2356
+ segments=["region", "date"]
2357
+ ```
2338
2358
2339
2359
The segmentation is performed during interrogation, and the resulting validation steps will
2340
2360
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -2548,12 +2568,16 @@ col_vals_ne(self, columns: 'str | list[str] | Column | ColumnSelector | ColumnSe
2548
2568
(i.e., no validation steps will be created for them).
2549
2569
2550
2570
A list with a combination of column names and tuples can be provided as well. This allows
2551
- for more complex segmentation scenarios. The following inputs are all valid:
2571
+ for more complex segmentation scenarios. The following inputs are both valid:
2552
2572
2553
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
2554
- in the `"region"` column and specific dates in the `"date"` column
2555
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
2556
- columns
2573
+ ```
2574
+ # Segments from all unique values in the `region` column
2575
+ # and specific dates in the `date` column
2576
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
2577
+
2578
+ # Segments from all unique values in the `region` and `date` columns
2579
+ segments=["region", "date"]
2580
+ ```
2557
2581
2558
2582
The segmentation is performed during interrogation, and the resulting validation steps will
2559
2583
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -2777,12 +2801,16 @@ col_vals_between(self, columns: 'str | list[str] | Column | ColumnSelector | Col
2777
2801
(i.e., no validation steps will be created for them).
2778
2802
2779
2803
A list with a combination of column names and tuples can be provided as well. This allows
2780
- for more complex segmentation scenarios. The following inputs are all valid:
2804
+ for more complex segmentation scenarios. The following inputs are both valid:
2781
2805
2782
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
2783
- in the `"region"` column and specific dates in the `"date"` column
2784
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
2785
- columns
2806
+ ```
2807
+ # Segments from all unique values in the `region` column
2808
+ # and specific dates in the `date` column
2809
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
2810
+
2811
+ # Segments from all unique values in the `region` and `date` columns
2812
+ segments=["region", "date"]
2813
+ ```
2786
2814
2787
2815
The segmentation is performed during interrogation, and the resulting validation steps will
2788
2816
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3018,12 +3046,16 @@ col_vals_outside(self, columns: 'str | list[str] | Column | ColumnSelector | Col
3018
3046
(i.e., no validation steps will be created for them).
3019
3047
3020
3048
A list with a combination of column names and tuples can be provided as well. This allows
3021
- for more complex segmentation scenarios. The following inputs are all valid:
3049
+ for more complex segmentation scenarios. The following inputs are both valid:
3022
3050
3023
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3024
- in the `"region"` column and specific dates in the `"date"` column
3025
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3026
- columns
3051
+ ```
3052
+ # Segments from all unique values in the `region` column
3053
+ # and specific dates in the `date` column
3054
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
3055
+
3056
+ # Segments from all unique values in the `region` and `date` columns
3057
+ segments=["region", "date"]
3058
+ ```
3027
3059
3028
3060
The segmentation is performed during interrogation, and the resulting validation steps will
3029
3061
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3218,12 +3250,16 @@ col_vals_in_set(self, columns: 'str | list[str] | Column | ColumnSelector | Colu
3218
3250
(i.e., no validation steps will be created for them).
3219
3251
3220
3252
A list with a combination of column names and tuples can be provided as well. This allows
3221
- for more complex segmentation scenarios. The following inputs are all valid:
3253
+ for more complex segmentation scenarios. The following inputs are both valid:
3222
3254
3223
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3224
- in the `"region"` column and specific dates in the `"date"` column
3225
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3226
- columns
3255
+ ```
3256
+ # Segments from all unique values in the `region` column
3257
+ # and specific dates in the `date` column
3258
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
3259
+
3260
+ # Segments from all unique values in the `region` and `date` columns
3261
+ segments=["region", "date"]
3262
+ ```
3227
3263
3228
3264
The segmentation is performed during interrogation, and the resulting validation steps will
3229
3265
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3404,12 +3440,16 @@ col_vals_not_in_set(self, columns: 'str | list[str] | Column | ColumnSelector |
3404
3440
(i.e., no validation steps will be created for them).
3405
3441
3406
3442
A list with a combination of column names and tuples can be provided as well. This allows
3407
- for more complex segmentation scenarios. The following inputs are all valid:
3443
+ for more complex segmentation scenarios. The following inputs are both valid:
3408
3444
3409
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3410
- in the `"region"` column and specific dates in the `"date"` column
3411
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3412
- columns
3445
+ ```
3446
+ # Segments from all unique values in the `region` column
3447
+ # and specific dates in the `date` column
3448
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
3449
+
3450
+ # Segments from all unique values in the `region` and `date` columns
3451
+ segments=["region", "date"]
3452
+ ```
3413
3453
3414
3454
The segmentation is performed during interrogation, and the resulting validation steps will
3415
3455
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3588,12 +3628,16 @@ col_vals_null(self, columns: 'str | list[str] | Column | ColumnSelector | Column
3588
3628
(i.e., no validation steps will be created for them).
3589
3629
3590
3630
A list with a combination of column names and tuples can be provided as well. This allows
3591
- for more complex segmentation scenarios. The following inputs are all valid:
3631
+ for more complex segmentation scenarios. The following inputs are both valid:
3592
3632
3593
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3594
- in the `"region"` column and specific dates in the `"date"` column
3595
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3596
- columns
3633
+ ```
3634
+ # Segments from all unique values in the `region` column
3635
+ # and specific dates in the `date` column
3636
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
3637
+
3638
+ # Segments from all unique values in the `region` and `date` columns
3639
+ segments=["region", "date"]
3640
+ ```
3597
3641
3598
3642
The segmentation is performed during interrogation, and the resulting validation steps will
3599
3643
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3770,12 +3814,16 @@ col_vals_not_null(self, columns: 'str | list[str] | Column | ColumnSelector | Co
3770
3814
(i.e., no validation steps will be created for them).
3771
3815
3772
3816
A list with a combination of column names and tuples can be provided as well. This allows
3773
- for more complex segmentation scenarios. The following inputs are all valid:
3817
+ for more complex segmentation scenarios. The following inputs are both valid:
3774
3818
3775
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3776
- in the `"region"` column and specific dates in the `"date"` column
3777
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3778
- columns
3819
+ ```
3820
+ # Segments from all unique values in the `region` column
3821
+ # and specific dates in the `date` column
3822
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
3823
+
3824
+ # Segments from all unique values in the `region` and `date` columns
3825
+ segments=["region", "date"]
3826
+ ```
3779
3827
3780
3828
The segmentation is performed during interrogation, and the resulting validation steps will
3781
3829
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -3958,12 +4006,16 @@ col_vals_regex(self, columns: 'str | list[str] | Column | ColumnSelector | Colum
3958
4006
(i.e., no validation steps will be created for them).
3959
4007
3960
4008
A list with a combination of column names and tuples can be provided as well. This allows
3961
- for more complex segmentation scenarios. The following inputs are all valid:
4009
+ for more complex segmentation scenarios. The following inputs are both valid:
3962
4010
3963
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
3964
- in the `"region"` column and specific dates in the `"date"` column
3965
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
3966
- columns
4011
+ ```
4012
+ # Segments from all unique values in the `region` column
4013
+ # and specific dates in the `date` column
4014
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
4015
+
4016
+ # Segments from all unique values in the `region` and `date` columns
4017
+ segments=["region", "date"]
4018
+ ```
3967
4019
3968
4020
The segmentation is performed during interrogation, and the resulting validation steps will
3969
4021
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -4140,12 +4192,16 @@ col_vals_expr(self, expr: 'any', pre: 'Callable | None' = None, segments: 'Segme
4140
4192
(i.e., no validation steps will be created for them).
4141
4193
4142
4194
A list with a combination of column names and tuples can be provided as well. This allows
4143
- for more complex segmentation scenarios. The following inputs are all valid:
4195
+ for more complex segmentation scenarios. The following inputs are both valid:
4144
4196
4145
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
4146
- in the `"region"` column and specific dates in the `"date"` column
4147
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
4148
- columns
4197
+ ```
4198
+ # Segments from all unique values in the `region` column
4199
+ # and specific dates in the `date` column
4200
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
4201
+
4202
+ # Segments from all unique values in the `region` and `date` columns
4203
+ segments=["region", "date"]
4204
+ ```
4149
4205
4150
4206
The segmentation is performed during interrogation, and the resulting validation steps will
4151
4207
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -4430,12 +4486,16 @@ rows_distinct(self, columns_subset: 'str | list[str] | None' = None, pre: 'Calla
4430
4486
(i.e., no validation steps will be created for them).
4431
4487
4432
4488
A list with a combination of column names and tuples can be provided as well. This allows
4433
- for more complex segmentation scenarios. The following inputs are all valid:
4489
+ for more complex segmentation scenarios. The following inputs are both valid:
4434
4490
4435
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
4436
- in the `"region"` column and specific dates in the `"date"` column
4437
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
4438
- columns
4491
+ ```
4492
+ # Segments from all unique values in the `region` column
4493
+ # and specific dates in the `date` column
4494
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
4495
+
4496
+ # Segments from all unique values in the `region` and `date` columns
4497
+ segments=["region", "date"]
4498
+ ```
4439
4499
4440
4500
The segmentation is performed during interrogation, and the resulting validation steps will
4441
4501
be numbered sequentially. Each segment will have its own validation step, and the results
@@ -4616,12 +4676,16 @@ rows_complete(self, columns_subset: 'str | list[str] | None' = None, pre: 'Calla
4616
4676
(i.e., no validation steps will be created for them).
4617
4677
4618
4678
A list with a combination of column names and tuples can be provided as well. This allows
4619
- for more complex segmentation scenarios. The following inputs are all valid:
4679
+ for more complex segmentation scenarios. The following inputs are both valid:
4620
4680
4621
- - `segments=["region", ("date", ["2023-01-01", "2023-01-02"])]`: segments on unique values
4622
- in the `"region"` column and specific dates in the `"date"` column
4623
- - `segments=["region", "date"]`: segments on unique values in the `"region"` and `"date"`
4624
- columns
4681
+ ```
4682
+ # Segments from all unique values in the `region` column
4683
+ # and specific dates in the `date` column
4684
+ segments=["region", ("date", ["2023-01-01", "2023-01-02"])]
4685
+
4686
+ # Segments from all unique values in the `region` and `date` columns
4687
+ segments=["region", "date"]
4688
+ ```
4625
4689
4626
4690
The segmentation is performed during interrogation, and the resulting validation steps will
4627
4691
be numbered sequentially. Each segment will have its own validation step, and the results
0 commit comments