|
| 1 | +#![cfg_attr(feature = "tco", allow(internal_features))] |
| 2 | +#![cfg_attr(feature = "tco", allow(incomplete_features))] |
| 3 | +#![cfg_attr(feature = "tco", feature(explicit_tail_calls))] |
| 4 | +#![cfg_attr(feature = "tco", feature(core_intrinsics))] |
| 5 | + |
| 6 | +use eyre::Result; |
| 7 | +use itertools::Itertools; |
| 8 | +use openvm_circuit::arch::execution_mode::metered::segment_ctx::SegmentationLimits; |
| 9 | +use openvm_circuit::arch::execution_mode::Segment; |
| 10 | +use openvm_circuit::arch::{PreflightExecutionOutput, VirtualMachine, VmCircuitConfig, VmInstance}; |
| 11 | +use openvm_sdk::prover::vm::new_local_prover; |
| 12 | +use openvm_sdk::{ |
| 13 | + config::{AppConfig, DEFAULT_APP_LOG_BLOWUP}, |
| 14 | + StdIn, |
| 15 | +}; |
| 16 | +use openvm_stark_backend::p3_matrix::dense::DenseMatrix; |
| 17 | +use openvm_stark_sdk::config::baby_bear_poseidon2::BabyBearPermutationEngine; |
| 18 | +use openvm_stark_sdk::config::FriParameters; |
| 19 | +use openvm_stark_sdk::openvm_stark_backend::p3_field::PrimeField32; |
| 20 | +use openvm_stark_sdk::p3_baby_bear::BabyBear; |
| 21 | +use powdr_autoprecompiles::JsonExport; |
| 22 | +use std::collections::hash_map::Entry; |
| 23 | +use std::collections::BTreeMap; |
| 24 | +use std::{collections::HashMap, path::PathBuf, sync::Arc}; |
| 25 | + |
| 26 | +#[cfg(not(feature = "cuda"))] |
| 27 | +use crate::PowdrSdkCpu; |
| 28 | +use crate::{CompiledProgram, SpecializedConfigCpuBuilder}; |
| 29 | +use tracing::info_span; |
| 30 | + |
| 31 | +use std::collections::HashSet; |
| 32 | +use std::hash::Hash; |
| 33 | + |
| 34 | +// ChatGPT generated code |
| 35 | +fn intersect_partitions<Id>(partitions: &[Vec<Vec<Id>>]) -> Vec<Vec<Id>> |
| 36 | +where |
| 37 | + Id: Eq + Hash + Copy, |
| 38 | +{ |
| 39 | + if partitions.is_empty() { |
| 40 | + return Vec::new(); |
| 41 | + } |
| 42 | + |
| 43 | + // 1) For each partition, build a map: Id -> class_index |
| 44 | + let mut maps: Vec<HashMap<Id, usize>> = Vec::with_capacity(partitions.len()); |
| 45 | + for part in partitions { |
| 46 | + let mut m = HashMap::new(); |
| 47 | + for (class_idx, class) in part.iter().enumerate() { |
| 48 | + for &id in class { |
| 49 | + m.insert(id, class_idx); |
| 50 | + } |
| 51 | + } |
| 52 | + maps.push(m); |
| 53 | + } |
| 54 | + |
| 55 | + // 2) Collect the universe of all Ids |
| 56 | + let mut universe: HashSet<Id> = HashSet::new(); |
| 57 | + for part in partitions { |
| 58 | + for class in part { |
| 59 | + for &id in class { |
| 60 | + universe.insert(id); |
| 61 | + } |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + // 3) For each Id, build its "signature" of class indices across all partitions |
| 66 | + // and group by that signature. |
| 67 | + let mut grouped: HashMap<Vec<usize>, Vec<Id>> = HashMap::new(); |
| 68 | + |
| 69 | + for &id in &universe { |
| 70 | + let mut signature = Vec::with_capacity(maps.len()); |
| 71 | + for m in &maps { |
| 72 | + let class_idx = m.get(&id).expect("id missing in some partition"); |
| 73 | + signature.push(*class_idx); |
| 74 | + } |
| 75 | + grouped.entry(signature).or_default().push(id); |
| 76 | + } |
| 77 | + |
| 78 | + // 4) Resulting equivalence classes are the grouped values |
| 79 | + grouped.into_values().collect() |
| 80 | +} |
| 81 | + |
| 82 | +pub fn execution_stats( |
| 83 | + program: &CompiledProgram, |
| 84 | + inputs: StdIn, |
| 85 | + segment_height: Option<usize>, // uses the default height if None |
| 86 | + apc_candidates_dir: Option<PathBuf>, |
| 87 | +) -> Result<(), Box<dyn std::error::Error>> { |
| 88 | + let exe = &program.exe; |
| 89 | + let mut vm_config = program.vm_config.clone(); |
| 90 | + |
| 91 | + // DefaultSegmentationStrategy { max_segment_len: 4194204, max_cells_per_chip_in_segment: 503304480 } |
| 92 | + if let Some(segment_height) = segment_height { |
| 93 | + vm_config |
| 94 | + .sdk |
| 95 | + .config_mut() |
| 96 | + .sdk |
| 97 | + .system |
| 98 | + .config |
| 99 | + .segmentation_limits = |
| 100 | + SegmentationLimits::default().with_max_trace_height(segment_height as u32); |
| 101 | + tracing::debug!("Setting max segment len to {}", segment_height); |
| 102 | + } |
| 103 | + |
| 104 | + // Set app configuration |
| 105 | + let app_fri_params = |
| 106 | + FriParameters::standard_with_100_bits_conjectured_security(DEFAULT_APP_LOG_BLOWUP); |
| 107 | + let app_config = AppConfig::new(app_fri_params, vm_config.clone()); |
| 108 | + |
| 109 | + // Create the SDK |
| 110 | + #[cfg(feature = "cuda")] |
| 111 | + let sdk = PowdrSdkGpu::new(app_config).unwrap(); |
| 112 | + #[cfg(not(feature = "cuda"))] |
| 113 | + let sdk = PowdrSdkCpu::new(app_config).unwrap(); |
| 114 | + // Build owned vm instance, so we can mutate it later |
| 115 | + let vm_builder = sdk.app_vm_builder().clone(); |
| 116 | + let vm_pk = sdk.app_pk().app_vm_pk.clone(); |
| 117 | + let exe = sdk.convert_to_exe(exe.clone())?; |
| 118 | + let mut vm_instance: VmInstance<_, _> = new_local_prover(vm_builder, &vm_pk, exe.clone())?; |
| 119 | + |
| 120 | + vm_instance.reset_state(inputs.clone()); |
| 121 | + let metered_ctx = vm_instance.vm.build_metered_ctx(&exe); |
| 122 | + let metered_interpreter = vm_instance.vm.metered_interpreter(vm_instance.exe())?; |
| 123 | + let (segments, _) = metered_interpreter.execute_metered(inputs.clone(), metered_ctx)?; |
| 124 | + let mut state = vm_instance.state_mut().take(); |
| 125 | + |
| 126 | + // Get reusable inputs for `debug_proving_ctx`, the mock prover API from OVM. |
| 127 | + let vm: &mut VirtualMachine<BabyBearPermutationEngine<_>, SpecializedConfigCpuBuilder> = |
| 128 | + &mut vm_instance.vm; |
| 129 | + |
| 130 | + // Mapping (segment_idx, timestamp) -> Vec<u32> |
| 131 | + let mut rows_by_time = BTreeMap::new(); |
| 132 | + |
| 133 | + let mut trace_values_by_pc = HashMap::new(); |
| 134 | + let mut column_names_by_air_id = HashMap::new(); |
| 135 | + let mut air_id_by_pc = HashMap::new(); |
| 136 | + |
| 137 | + for (seg_idx, segment) in segments.into_iter().enumerate() { |
| 138 | + let _segment_span = info_span!("prove_segment", segment = seg_idx).entered(); |
| 139 | + // We need a separate span so the metric label includes "segment" from _segment_span |
| 140 | + let _prove_span = info_span!("total_proof").entered(); |
| 141 | + let Segment { |
| 142 | + instret_start, |
| 143 | + num_insns, |
| 144 | + trace_heights, |
| 145 | + } = segment; |
| 146 | + assert_eq!(state.as_ref().unwrap().instret(), instret_start); |
| 147 | + let from_state = Option::take(&mut state).unwrap(); |
| 148 | + vm.transport_init_memory_to_device(&from_state.memory); |
| 149 | + let PreflightExecutionOutput { |
| 150 | + system_records, |
| 151 | + record_arenas, |
| 152 | + to_state, |
| 153 | + } = vm.execute_preflight( |
| 154 | + &mut vm_instance.interpreter, |
| 155 | + from_state, |
| 156 | + Some(num_insns), |
| 157 | + &trace_heights, |
| 158 | + )?; |
| 159 | + state = Some(to_state); |
| 160 | + |
| 161 | + // Generate proving context for each segment |
| 162 | + let ctx = vm.generate_proving_ctx(system_records, record_arenas)?; |
| 163 | + |
| 164 | + let global_airs = vm |
| 165 | + .config() |
| 166 | + .create_airs() |
| 167 | + .unwrap() |
| 168 | + .into_airs() |
| 169 | + .enumerate() |
| 170 | + .collect::<HashMap<_, _>>(); |
| 171 | + |
| 172 | + for (air_id, proving_context) in &ctx.per_air { |
| 173 | + if !proving_context.cached_mains.is_empty() { |
| 174 | + // Not the case for instruction circuits |
| 175 | + continue; |
| 176 | + } |
| 177 | + let main: &Arc<DenseMatrix<BabyBear>> = proving_context.common_main.as_ref().unwrap(); |
| 178 | + |
| 179 | + let air = &global_airs[air_id]; |
| 180 | + let Some(column_names) = air.columns() else { |
| 181 | + continue; |
| 182 | + }; |
| 183 | + assert_eq!(main.width, column_names.len()); |
| 184 | + |
| 185 | + // This is the case for all instruction circuits |
| 186 | + let Some(pc_index) = column_names |
| 187 | + .iter() |
| 188 | + .position(|name| name == "from_state__pc") |
| 189 | + else { |
| 190 | + continue; |
| 191 | + }; |
| 192 | + let ts_index = 1; |
| 193 | + |
| 194 | + for row in main.row_slices() { |
| 195 | + let row = row.iter().map(|v| v.as_canonical_u32()).collect::<Vec<_>>(); |
| 196 | + let pc_value = row[pc_index]; |
| 197 | + let ts_value = row[ts_index]; |
| 198 | + rows_by_time.insert((seg_idx, ts_value), row.clone()); |
| 199 | + |
| 200 | + if pc_value == 0 { |
| 201 | + // Padding row! |
| 202 | + continue; |
| 203 | + } |
| 204 | + |
| 205 | + if let Entry::Vacant(e) = trace_values_by_pc.entry(pc_value) { |
| 206 | + // First time we see this PC, initialize the column -> values map |
| 207 | + e.insert(vec![Vec::new(); row.len()]); |
| 208 | + column_names_by_air_id.insert(*air_id, column_names.clone()); |
| 209 | + air_id_by_pc.insert(pc_value, *air_id); |
| 210 | + } |
| 211 | + let values_by_col = trace_values_by_pc.get_mut(&pc_value).unwrap(); |
| 212 | + assert_eq!( |
| 213 | + air_id_by_pc[&pc_value], |
| 214 | + *air_id, |
| 215 | + "Mismatched air IDs for PC {}: {} vs {}", |
| 216 | + pc_value, |
| 217 | + global_airs[&air_id_by_pc[&pc_value]].name(), |
| 218 | + air.name() |
| 219 | + ); |
| 220 | + assert_eq!(values_by_col.len(), row.len()); |
| 221 | + |
| 222 | + for (col_idx, value) in row.iter().enumerate() { |
| 223 | + values_by_col[col_idx].push(*value); |
| 224 | + } |
| 225 | + } |
| 226 | + } |
| 227 | + } |
| 228 | + |
| 229 | + let apc_candidates_dir = apc_candidates_dir.unwrap(); |
| 230 | + let apc_candiates: powdr_autoprecompiles::pgo::JsonExport = { |
| 231 | + let json_str = |
| 232 | + std::fs::read_to_string(apc_candidates_dir.join("apc_candidates.json")).unwrap(); |
| 233 | + serde_json::from_str(&json_str).unwrap() |
| 234 | + }; |
| 235 | + let apcs = apc_candiates.apcs; |
| 236 | + |
| 237 | + // Block ID -> instruction count mapping |
| 238 | + let instruction_counts = apcs |
| 239 | + .iter() |
| 240 | + .map(|apc| { |
| 241 | + ( |
| 242 | + apc.original_block.start_pc, |
| 243 | + apc.original_block.statements.len(), |
| 244 | + ) |
| 245 | + }) |
| 246 | + .collect::<HashMap<_, _>>(); |
| 247 | + |
| 248 | + // Block ID -> Vec<Vec<Row>> |
| 249 | + let mut block_rows = BTreeMap::new(); |
| 250 | + let mut i = 0; |
| 251 | + let rows_by_time = rows_by_time.values().collect::<Vec<_>>(); |
| 252 | + while i < rows_by_time.len() { |
| 253 | + let row = &rows_by_time[i]; |
| 254 | + let pc_value = row[0] as u64; |
| 255 | + |
| 256 | + if instruction_counts.contains_key(&pc_value) { |
| 257 | + let instruction_count = instruction_counts[&pc_value]; |
| 258 | + let block_row_slice = &rows_by_time[i..i + instruction_count]; |
| 259 | + block_rows |
| 260 | + .entry(pc_value) |
| 261 | + .or_insert(Vec::new()) |
| 262 | + .push(block_row_slice.to_vec()); |
| 263 | + i += instruction_count; |
| 264 | + } else { |
| 265 | + i += 1; |
| 266 | + } |
| 267 | + } |
| 268 | + |
| 269 | + // Block ID -> Vec<Vec<Vec<(instruction_index, col_index)>>>: |
| 270 | + // Indices: block ID, instance idx, equivalence class idx, cell |
| 271 | + let equivalence_classes = block_rows |
| 272 | + .into_iter() |
| 273 | + .map(|(block_id, blocks)| { |
| 274 | + let classes = blocks |
| 275 | + .into_iter() |
| 276 | + .map(|rows| { |
| 277 | + let value_to_cells = rows |
| 278 | + .into_iter() |
| 279 | + .enumerate() |
| 280 | + .flat_map(|(instruction_index, row)| { |
| 281 | + row.iter() |
| 282 | + .enumerate() |
| 283 | + .map(|(col_index, v)| (*v, (instruction_index, col_index))) |
| 284 | + .collect::<Vec<_>>() |
| 285 | + }) |
| 286 | + .into_group_map(); |
| 287 | + value_to_cells.values().cloned().collect::<Vec<_>>() |
| 288 | + }) |
| 289 | + .collect::<Vec<_>>(); |
| 290 | + (block_id, classes) |
| 291 | + }) |
| 292 | + .collect::<HashMap<_, _>>(); |
| 293 | + |
| 294 | + // Intersect equivalence classes across all instances |
| 295 | + let intersected_equivalence_classes = equivalence_classes |
| 296 | + .into_iter() |
| 297 | + .map(|(block_id, classes)| { |
| 298 | + let intersected = intersect_partitions(&classes); |
| 299 | + |
| 300 | + // Remove singleton classes |
| 301 | + let intersected = intersected |
| 302 | + .into_iter() |
| 303 | + .filter(|class| class.len() > 1) |
| 304 | + .collect::<Vec<_>>(); |
| 305 | + |
| 306 | + (block_id, intersected) |
| 307 | + }) |
| 308 | + .collect::<BTreeMap<_, _>>(); |
| 309 | + |
| 310 | + // Map all column values to their range (1st and 99th percentile) for each pc |
| 311 | + let column_ranges_by_pc: HashMap<u32, Vec<(u32, u32)>> = trace_values_by_pc |
| 312 | + .into_iter() |
| 313 | + .map(|(pc, values_by_col)| { |
| 314 | + let column_ranges = values_by_col |
| 315 | + .into_iter() |
| 316 | + .map(|mut values| { |
| 317 | + values.sort_unstable(); |
| 318 | + let len = values.len(); |
| 319 | + let p1_index = len / 100; // 1st percentile |
| 320 | + let p99_index = len * 99 / 100; // 99th percentile |
| 321 | + (values[p1_index], values[p99_index]) |
| 322 | + }) |
| 323 | + .collect(); |
| 324 | + (pc, column_ranges) |
| 325 | + }) |
| 326 | + .collect(); |
| 327 | + |
| 328 | + let export = JsonExport { |
| 329 | + air_id_by_pc: air_id_by_pc.into_iter().collect(), |
| 330 | + column_names_by_air_id: column_names_by_air_id.into_iter().collect(), |
| 331 | + column_ranges_by_pc: column_ranges_by_pc.into_iter().collect(), |
| 332 | + equivalence_classes_by_block: intersected_equivalence_classes, |
| 333 | + }; |
| 334 | + |
| 335 | + // Write to pgo_range_constraints.json |
| 336 | + let json = serde_json::to_string_pretty(&export).unwrap(); |
| 337 | + std::fs::write("pgo_range_constraints.json", json).unwrap(); |
| 338 | + |
| 339 | + Ok(()) |
| 340 | +} |
0 commit comments