|
| 1 | +import numpy as np |
| 2 | +from mpi4py import MPI |
| 3 | +import basix.ufl |
| 4 | +from petsc4py import PETSc |
| 5 | +import ufl |
| 6 | +from dolfinx import fem, io, mesh as msh, default_scalar_type |
| 7 | +from dolfinx.fem.petsc import assemble_matrix, assemble_vector, apply_lifting, create_vector, set_bc, LinearProblem |
| 8 | +from dolfinx.mesh import create_rectangle |
| 9 | +import basix |
| 10 | +from fenicsxprecice import Adapter, CouplingMesh |
| 11 | + |
| 12 | + |
| 13 | +# geometry |
| 14 | +nx = 100 |
| 15 | +ny = 25 |
| 16 | +nz = 1 |
| 17 | + |
| 18 | +y_top = 0 |
| 19 | +y_bottom = y_top - .25 |
| 20 | +x_left = 0 |
| 21 | +x_right = x_left + 1 |
| 22 | + |
| 23 | +fenics_dt = 0.01 # time step size |
| 24 | + |
| 25 | + |
| 26 | +def top_boundary(x): |
| 27 | + tol = 1E-14 |
| 28 | + return np.isclose(x[1], y_top, tol) |
| 29 | + |
| 30 | + |
| 31 | +def bottom_boundary(x): |
| 32 | + tol = 1E-14 |
| 33 | + return np.isclose(x[1], y_bottom, tol) |
| 34 | + |
| 35 | + |
| 36 | +class initial_value(): |
| 37 | + def __init__(self, constant): |
| 38 | + self.constant = constant |
| 39 | + |
| 40 | + def __call__(self, x): |
| 41 | + return np.full(x[0].shape, self.constant) |
| 42 | + |
| 43 | + |
| 44 | +class GradientSolver: |
| 45 | + """ |
| 46 | + compute flux following http://hplgit.github.io/INF5620/doc/pub/fenics_tutorial1.1/tu2.html#tut-poisson-gradu |
| 47 | + The solver has been changed since the original version from the link above introduces larger errors |
| 48 | +
|
| 49 | + :param V_g: Vector function space |
| 50 | + :param u: solution where gradient is to be determined |
| 51 | + """ |
| 52 | + |
| 53 | + def __init__(self, domain, V_g): |
| 54 | + self.domain = domain, |
| 55 | + self.V_g = V_g |
| 56 | + |
| 57 | + w = ufl.TrialFunction(V_g) |
| 58 | + self.v = ufl.TestFunction(V_g) |
| 59 | + a = fem.form(ufl.inner(w, self.v) * ufl.dx) |
| 60 | + self.A = assemble_matrix(a) |
| 61 | + self.A.assemble() |
| 62 | + |
| 63 | + self.solver = PETSc.KSP().create(domain.comm) |
| 64 | + self.solver.setOperators(self.A) |
| 65 | + self.solver.setType(PETSc.KSP.Type.PREONLY) |
| 66 | + self.solver.getPC().setType(PETSc.PC.Type.LU) |
| 67 | + |
| 68 | + self.returnValue = fem.Function(V_g) |
| 69 | + |
| 70 | + def compute(self, u, k): |
| 71 | + L = fem.form(ufl.inner(-k * ufl.grad(u), self.v) * ufl.dx) |
| 72 | + b = create_vector(fem.extract_function_spaces(L)) |
| 73 | + assemble_vector(b, L) |
| 74 | + b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) |
| 75 | + self.solver.solve(b, self.returnValue.x.petsc_vec) |
| 76 | + return self.returnValue |
| 77 | + |
| 78 | + |
| 79 | +p0 = (x_left, y_bottom) |
| 80 | +p1 = (x_right, y_top) |
| 81 | + |
| 82 | +mesh = create_rectangle(MPI.COMM_WORLD, [np.asarray(p0), np.asarray(p1)], [nx, ny], msh.CellType.triangle) |
| 83 | +V = fem.functionspace(mesh, ('P', 2)) |
| 84 | +# for the vector function space |
| 85 | +element = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 1, shape=(mesh.geometry.dim,)) |
| 86 | +V_g = fem.functionspace(mesh, element) |
| 87 | +W, map_to_W = V_g.sub(1).collapse() |
| 88 | + |
| 89 | +gradient_solver = GradientSolver(mesh, V_g) |
| 90 | + |
| 91 | +alpha = 1 # m^2/s, https://en.wikipedia.org/wiki/Thermal_diffusivity |
| 92 | +k = 100 # kg * m / s^3 / K, https://en.wikipedia.org/wiki/Thermal_conductivity |
| 93 | + |
| 94 | +# We will only exchange flux in y direction on coupling interface. No initialization necessary. |
| 95 | +flux_y = fem.Function(W) |
| 96 | + |
| 97 | +# Define initial value |
| 98 | +u_n = fem.Function(V) |
| 99 | +u_n.interpolate(initial_value(310)) |
| 100 | + |
| 101 | +tdim = mesh.topology.dim |
| 102 | +fdim = tdim - 1 |
| 103 | +mesh.topology.create_connectivity(fdim, tdim) |
| 104 | +dofs_coupling = fem.locate_dofs_geometrical(V, top_boundary) |
| 105 | +dofs_bottom = fem.locate_dofs_geometrical(V, bottom_boundary) |
| 106 | + |
| 107 | +# Adapter definition and initialization |
| 108 | +precice = Adapter(adapter_config_filename="precice-adapter-config.json", mpi_comm=MPI.COMM_WORLD) |
| 109 | + |
| 110 | +# top_boundary is coupling boundary |
| 111 | +coupling_mesh = CouplingMesh("Solid-Mesh", top_boundary, {"Temperature": V}, {"Heat-Flux": flux_y}) |
| 112 | +precice.initialize([coupling_mesh]) |
| 113 | + |
| 114 | +# boundary function for the coupling interface |
| 115 | +coupling_function = fem.Function(V) |
| 116 | + |
| 117 | +# Assigning appropriate dt |
| 118 | +precice_dt = precice.get_max_time_step_size() |
| 119 | +dt = np.min([fenics_dt, precice_dt]) |
| 120 | + |
| 121 | +# Define variational problem |
| 122 | +u = ufl.TrialFunction(V) |
| 123 | +v = ufl.TestFunction(V) |
| 124 | +F = u * v / dt * ufl.dx + alpha * ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx - u_n * v / dt * ufl.dx |
| 125 | + |
| 126 | +# apply constant Dirichlet boundary condition at bottom edge |
| 127 | +# apply Dirichlet boundary condition on coupling interface |
| 128 | +bcs = [fem.dirichletbc(coupling_function, dofs_coupling), fem.dirichletbc(default_scalar_type(310), dofs_bottom, V)] |
| 129 | + |
| 130 | +a = fem.form(ufl.lhs(F)) |
| 131 | +L = fem.form(ufl.rhs(F)) |
| 132 | + |
| 133 | +A = assemble_matrix(a, bcs=bcs) |
| 134 | +A.assemble() |
| 135 | +b = create_vector(fem.extract_function_spaces(L)) |
| 136 | +uh = fem.Function(V) |
| 137 | +solver = PETSc.KSP().create(mesh.comm) |
| 138 | +solver.setOperators(A) |
| 139 | +solver.setType(PETSc.KSP.Type.PREONLY) |
| 140 | +solver.getPC().setType(PETSc.PC.Type.LU) |
| 141 | + |
| 142 | + |
| 143 | +# Time-stepping |
| 144 | +t = 0 |
| 145 | + |
| 146 | +vtxwriter = io.VTXWriter(MPI.COMM_WORLD, f"output_solid.bp", [u_n]) |
| 147 | +vtxwriter.write(t) |
| 148 | + |
| 149 | +n = 0 |
| 150 | + |
| 151 | +flux = fem.Function(V_g) |
| 152 | + |
| 153 | +while precice.is_coupling_ongoing(): |
| 154 | + |
| 155 | + if precice.requires_writing_checkpoint(): # write checkpoint |
| 156 | + precice.store_checkpoint(u_n, t, 0) |
| 157 | + |
| 158 | + precice_dt = precice.get_max_time_step_size() |
| 159 | + dt = np.min([fenics_dt, precice_dt]) |
| 160 | + precice.read_data(coupling_mesh.get_name(), "Temperature", dt, coupling_function) |
| 161 | + |
| 162 | + # Update the right hand side reusing the initial vector |
| 163 | + with b.localForm() as loc_b: |
| 164 | + loc_b.set(0) |
| 165 | + assemble_vector(b, L) |
| 166 | + |
| 167 | + apply_lifting(b, [a], [bcs]) |
| 168 | + set_bc(b, bcs) |
| 169 | + |
| 170 | + # Solve linear problem |
| 171 | + solver.solve(b, uh.x.petsc_vec) |
| 172 | + |
| 173 | + # Dirichlet problem obtains flux from solution and sends flux on boundary to Neumann problem |
| 174 | + flux = gradient_solver.compute(u_n, k) |
| 175 | + flux_y.interpolate(flux.sub(1)) |
| 176 | + precice.write_data(coupling_mesh.get_name(), "Heat-Flux", flux_y) |
| 177 | + |
| 178 | + precice.advance(dt) |
| 179 | + |
| 180 | + if precice.requires_reading_checkpoint(): |
| 181 | + u_cp, t_cp, _ = precice.retrieve_checkpoint() |
| 182 | + u_n.x.array[:] = u_cp.x.array |
| 183 | + t = t_cp |
| 184 | + else: # update solution |
| 185 | + # Update solution at previous time step (u_n) |
| 186 | + u_n.x.array[:] = uh.x.array |
| 187 | + t += float(dt) |
| 188 | + n += 1 |
| 189 | + if n % 20 == 0: |
| 190 | + vtxwriter.write(t) |
| 191 | + |
| 192 | + if precice.is_time_window_complete(): |
| 193 | + # update boundary condition not necessary because it is constant |
| 194 | + pass |
| 195 | + |
| 196 | + |
| 197 | +precice.finalize() |
| 198 | +vtxwriter.close() |
0 commit comments