@@ -40,7 +40,18 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
4040| ---| ----|
4141<!-- | [**conda**](https://anaconda.org/conda-forge/plotly_resampler/) | `conda install -c conda-forge plotly_resampler` | -->
4242
43- <br >
43+ ### Features :tada :
44+
45+ * ** Convenient** to use:
46+ * just add either
47+ * ` register_plotly_resampler ` function to your notebook with the best suited ` mode ` argument.
48+ * ` FigureResampler ` decorator around a plotly Figure and call ` .show_dash() `
49+ * ` FigureWidgetResampler ` decorator around a plotly Figure and output the instance in a cell
50+ * allows all other plotly figure construction flexibility to be used!
51+ * ** Environment-independent**
52+ * can be used in Jupyter, vscode-notebooks, Pycharm-notebooks, Google Colab, DataSpell, and even as application (on a server)
53+ * Interface for ** various aggregation algorithms** :
54+ * ability to develop or select your preferred sequence aggregation method
4455
4556## Usage
4657
@@ -79,14 +90,9 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
7990 < / details>
8091
8192* 👷 < b> Manually< / b> _(higher data aggregation configurability, more speedup possibilities)_:
82- < details>
83- < summary> Within a < b>< i> jupyter< / i>< / b> environment without creating a < i> web application< / i>< / summary>
84- < br>
85-
93+ * Within a < b>< i> jupyter< / i>< / b> environment without creating a < i> web application< / i>
8694 1 . wrap the plotly Figure with `FigureWidgetResampler`
8795 2 . output the `FigureWidgetResampler` instance in a cell
88-
89- * ** code example** :
9096 ```python
9197 import plotly.graph_objects as go; import numpy as np
9298 from plotly_resampler import FigureResampler, FigureWidgetResampler
@@ -100,15 +106,9 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
100106
101107 fig
102108 ```
103- < / details>
104- < details>
105- < summary> Using a < b>< i> web- application< / i>< / b> with < b>< a href= " https://github.com/plotly/dash" > dash< / a>< / b> callbacks< / summary>
106- < br>
107-
109+ * Using a < b>< i> web- application< / i>< / b> with < b>< a href= " https://github.com/plotly/dash" > dash< / a>< / b> callbacks
108110 1 . wrap the plotly Figure with `FigureResampler`
109111 2 . call `.show_dash()` on the `Figure`
110-
111- * ** code example** :
112112 ```python
113113 import plotly.graph_objects as go; import numpy as np
114114 from plotly_resampler import FigureResampler, FigureWidgetResampler
@@ -122,10 +122,6 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
122122
123123 fig.show_dash(mode = ' inline' )
124124 ```
125-
126- < / details>
127- < br>
128-
129125 > ** Tip** 💡:
130126 > For significant faster initial loading of the Figure, we advise to wrap the
131127 > constructor of the plotly Figure and add the trace data as `hf_x` and `hf_y`
@@ -136,25 +132,7 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
136132> Any plotly Figure can be wrapped with `FigureResampler` and `FigureWidgetResampler` ! 🎉
137133> But, (obviously) only the scatter traces will be resampled.
138134
139-
140-
141-
142- < br>
143- < details>< summary> 👉 < b> Features< / b>< / summary>
144-
145- * ** Convenient** to use:
146- * just add either
147- * `register_plotly_resampler` function to your notebook with the best suited `mode` argument.
148- * `FigureResampler` decorator around a plotly Figure and call `.show_dash()`
149- * `FigureWidgetResampler` decorator around a plotly Figure and output the instance in a cell
150- * allows all other plotly figure construction flexibility to be used!
151- * ** Environment- independent**
152- * can be used in Jupyter, vscode- notebooks, Pycharm- notebooks, Google Colab, DataSpell, and even as application (on a server)
153- * Interface for ** various aggregation algorithms** :
154- * ability to develop or select your preferred sequence aggregation method
155- < / details>
156-
157- # ## Important considerations & tips
135+ # # Important considerations & tips
158136
159137* When running the code on a server, you should forward the port of the `FigureResampler.show_dash()` method to your local machine.< br>
160138 ** Note** that you can add dynamic aggregation to plotly figures with the `FigureWidgetResampler` wrapper without needing to forward a port!
@@ -167,22 +145,23 @@ In [this Plotly-Resampler demo](https://github.com/predict-idlab/plotly-resample
167145
168146Paper (preprint): https:// arxiv.org/ abs / 2206.08703
169147
170- ```latex
171- @ misc{https: // doi.org / 10.48550 / arxiv.2206.08703 ,
172- author = {Van Der Donckt, Jonas and Van Der Donckt, Jeroen and Deprost, Emiel and Van Hoecke, Sofie },
173- title = {Plotly - Resampler: Effective Visual Analytics for Large Time Series },
174- year = {2022 },
175- doi = { 10.48550 / ARXIV .2206.08703 },
176- url = {https: // arxiv.org / abs / 2206.08703 },
177- publisher = {arXiv},
148+ ```bibtex
149+ @ inproceedings{van2022plotly ,
150+ title={Plotly - resampler: Effective visual analytics for large time series },
151+ author={Van Der Donckt, Jonas and Van Der Donckt, Jeroen and Deprost, Emiel and Van Hoecke, Sofie },
152+ booktitle= {2022 IEEE Visualization and Visual Analytics ( VIS ) },
153+ pages={ 21 -- 25 },
154+ year={ 2022 },
155+ organization={ IEEE }
178156}
179157```
180158
181159# # Future work 🔨
182160
183161- [x] Support `.add_traces()` (currently only `.add_trace` is supported)
184- - [ ] Support `hf_color` and `hf_markersize` , see [# 50](https://github.com/predict-idlab/plotly-resampler/pull/50)
185- - [ ] Create C bindings for our EfficientLTTB algorithm.
162+ - [ ] Support `hf_color` and `hf_markersize` , see [# 148](https://github.com/predict-idlab/plotly-resampler/pull/148)
163+ - [x] Create C bindings for our EfficientLTTB algorithm.
164+ - [ ] Integrate with [tsdownsample](https:// github.com/ predict- idlab/ tsdownsample) :racehorse:
186165
187166< br>
188167
0 commit comments