Skip to content

Commit 0e91fcb

Browse files
authored
PDF 2025 (#3)
Generate pdf
1 parent 7fd3694 commit 0e91fcb

File tree

9 files changed

+374
-10
lines changed

9 files changed

+374
-10
lines changed

Makefile

Lines changed: 22 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,26 +1,39 @@
11

22

3-
4-
5-
build:
6-
quarto render docs/
7-
open docs/_build/index.html
8-
93
preview:
104
quarto preview docs/
115

126
render:
137
quarto render docs/
148

9+
pdf:
10+
quarto render docs/ --to pdf
11+
12+
docx:
13+
quarto render docs/ --to docx
14+
1515
open:
1616
open docs/_build/index.html
1717

1818
open-pdf:
1919
open docs/_build/Predictive-Modeling-in-Python.pdf
2020

21+
clean:
22+
rm -rf docs/_build
23+
rm -rf docs/.quarto
2124

25+
build:
26+
$(MAKE) render
27+
$(MAKE) open
2228

2329
render-fresh:
24-
rm -rf docs/_build
25-
rm -rf docs/.quarto
26-
quarto render docs/
30+
$(MAKE) clean
31+
$(MAKE) render
32+
33+
render-fresh-pdf:
34+
$(MAKE) clean
35+
$(MAKE) pdf
36+
37+
render-fresh-docx:
38+
$(MAKE) clean
39+
$(MAKE) docx

docs/_quarto.yml

Lines changed: 19 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ book:
9393
text: "Regression Overview"
9494

9595
- href: notes/regression/linear.qmd
96-
text: "Linear Regression w/ `sklearn`"
96+
text: "Linear Regression"
9797

9898
- href: notes/regression/ols.qmd
9999
text: "Linear Regression w/ `statsmodels`"
@@ -269,3 +269,21 @@ format:
269269
# toc: true # include a table of contents
270270
# toc-depth: 2 # control depth of table of contents
271271
# embed-fonts: true # embed fonts in the DOCX
272+
273+
274+
pdf:
275+
276+
# use XeLaTeX or LuaLaTeX so fontspec works:
277+
latex-engine: xelatex
278+
279+
mainfont: "Source Sans 3" # "Merriweather"
280+
sansfont: "Source Sans 3" # "Helvetica Neue"
281+
monofont: "Menlo"
282+
#fontsize: 11pt
283+
#linestretch: 1.2
284+
285+
includes:
286+
in-header: _pdf_styles.tex
287+
288+
#PrettyPDF-pdf:
289+
# keep-tex: true

docs/notes/autoregressive-models/arima.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Auto-Regressive Models
28

39
```{python}

docs/notes/autoregressive-models/autocorrelation.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Autocorrelation
28

39
**Autocorrelation** is a statistical concept that measures the relationship between a variable's current value and its past values over successive time intervals.

docs/notes/classification/index.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Classification
28

39
**Classification** is a supervised learning task where the variable we are trying to predict is discrete, whether that is binary or categorical.

docs/notes/ml-foundations/data-encoding.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Data Encoding
28

39

docs/notes/time-series-forecasting/index.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Regression for Time Series Forecasting (with `sklearn`)
28

39
Let's explore an example of how to use regression to perform trend analysis with time series data.

docs/notes/time-series-forecasting/seasonality.qmd

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
---
2+
jupyter: python3
3+
execute:
4+
cache: true # re-render only when source changes
5+
---
6+
17
# Regression for Seasonality Analysis
28

39
We've explored using a regression for time series forecasting, but what if there are seasonal or cyclical patterns in the data?

0 commit comments

Comments
 (0)