|
| 1 | +# Copyright 2024 The AI Edge Torch Authors. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +# Common utility functions for data loading etc. |
| 16 | +from dataclasses import dataclass |
| 17 | +from typing import Tuple |
| 18 | +from ai_edge_torch.generative.layers import kv_cache as kv_utils |
| 19 | +from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa_default |
| 20 | +from ai_edge_torch.generative.layers.experimental import kv_cache as kv_utils_experimental |
| 21 | +from ai_edge_torch.generative.layers.experimental import scaled_dot_product_attention as sdpa |
| 22 | +from ai_edge_torch.generative.layers.experimental import types |
| 23 | +import ai_edge_torch.generative.layers.model_config as cfg |
| 24 | +from multipledispatch import dispatch |
| 25 | +import torch |
| 26 | + |
| 27 | + |
| 28 | +def sdpa_with_kv_update( |
| 29 | + query: torch.Tensor, |
| 30 | + key: torch.Tensor, |
| 31 | + value: torch.Tensor, |
| 32 | + kv: kv_utils.KVCacheEntry, |
| 33 | + input_pos: torch.Tensor, |
| 34 | + mask: torch.Tensor, |
| 35 | + config: cfg.AttentionConfig, |
| 36 | +) -> Tuple[torch.Tensor, kv_utils.KVCacheEntry]: |
| 37 | + return sdpa_with_kv_update_impl( |
| 38 | + kv.kv_layout[0](), # key layout |
| 39 | + kv.kv_layout[1](), # value layout |
| 40 | + query=query, |
| 41 | + key=key, |
| 42 | + value=value, |
| 43 | + kv=kv, |
| 44 | + input_pos=input_pos, |
| 45 | + mask=mask, |
| 46 | + config=config, |
| 47 | + ) |
| 48 | + |
| 49 | + |
| 50 | +@dispatch(types.BNTH, types.BNHT) |
| 51 | +def sdpa_with_kv_update_impl( |
| 52 | + k_type, v_type, *args, **kwargs |
| 53 | +) -> Tuple[torch.Tensor, kv_utils.KVCacheEntry]: |
| 54 | + query = kwargs["query"] |
| 55 | + key = kwargs["key"] |
| 56 | + value = kwargs["value"] |
| 57 | + kv = kwargs["kv"] |
| 58 | + input_pos = kwargs["input_pos"] |
| 59 | + mask = kwargs["mask"] |
| 60 | + config = kwargs["config"] |
| 61 | + |
| 62 | + # Transpose k/v to specific layout for GPU implementation. |
| 63 | + b, seq_len, n, h = query.shape |
| 64 | + g = n // config.num_query_groups |
| 65 | + # btnh -> bnth -> b(kg)th -> 1(bk)(gt)h |
| 66 | + query = query.permute(0, 2, 1, 3).reshape( |
| 67 | + 1, b * config.num_query_groups, g * seq_len, h |
| 68 | + ) |
| 69 | + |
| 70 | + key = key.permute(0, 2, 1, 3).reshape( |
| 71 | + 1, -1, seq_len, config.head_dim |
| 72 | + ) # 1, bk, s, h |
| 73 | + value = value.permute(0, 2, 3, 1).reshape( |
| 74 | + 1, -1, config.head_dim, seq_len |
| 75 | + ) # 1, bk, h, s |
| 76 | + |
| 77 | + if kv is not None: |
| 78 | + kv = kv_utils_experimental.update(kv, input_pos, key, value) |
| 79 | + key, value = kv.k_cache, kv.v_cache |
| 80 | + |
| 81 | + sdpa_out = sdpa.scaled_dot_product_attention( |
| 82 | + kv, |
| 83 | + query, |
| 84 | + key, |
| 85 | + value, |
| 86 | + config.head_dim, |
| 87 | + mask=mask, |
| 88 | + softcap=config.logit_softcap, |
| 89 | + ) # 1, bk, gt, h |
| 90 | + sdpa_out = ( |
| 91 | + sdpa_out.reshape(b, -1, seq_len, h) |
| 92 | + .permute(0, 2, 1, 3) |
| 93 | + .reshape(b, seq_len, -1) |
| 94 | + ) |
| 95 | + return sdpa_out, kv |
| 96 | + |
| 97 | + |
| 98 | +@dispatch(object, object) |
| 99 | +def sdpa_with_kv_update_impl( |
| 100 | + k_type, v_type, *args, **kwargs |
| 101 | +) -> Tuple[torch.Tensor, kv_utils.KVCacheEntry]: |
| 102 | + query = kwargs["query"] |
| 103 | + key = kwargs["key"] |
| 104 | + value = kwargs["value"] |
| 105 | + kv = kwargs["kv"] |
| 106 | + input_pos = kwargs["input_pos"] |
| 107 | + mask = kwargs["mask"] |
| 108 | + config = kwargs["config"] |
| 109 | + |
| 110 | + b, seq_len, _, _ = query.shape |
| 111 | + if kv is not None: |
| 112 | + kv = kv_utils.update(kv, input_pos, key, value) |
| 113 | + key, value = kv.k_cache, kv.v_cache |
| 114 | + |
| 115 | + sdpa_out = sdpa_default.scaled_dot_product_attention( |
| 116 | + query, |
| 117 | + key, |
| 118 | + value, |
| 119 | + config.head_dim, |
| 120 | + mask=mask, |
| 121 | + softcap=config.logit_softcap, |
| 122 | + ) |
| 123 | + sdpa_out = sdpa_out.reshape(b, seq_len, -1) |
| 124 | + return sdpa_out, kv |
0 commit comments