|
| 1 | + |
| 2 | +#pragma once |
| 3 | +#ifdef ESP32 |
| 4 | +#include "AudioTools/CoreAudio/AudioPWM/PWMDriverBase.h" |
| 5 | +#include "driver/mcpwm.h" |
| 6 | + |
| 7 | +namespace audio_tools { |
| 8 | + |
| 9 | +/** |
| 10 | + * @brief Information for a PIN |
| 11 | + * @author Phil Schatzmann |
| 12 | + * @copyright GPLv3 |
| 13 | + */ |
| 14 | +struct PinInfoESP32Compl { |
| 15 | + int gpio_high; // high-side pin (PWMxA) |
| 16 | + int gpio_low; // low-side pin (PWMxB) |
| 17 | + mcpwm_unit_t unit; // 0..1 |
| 18 | + mcpwm_timer_t timer; // 0..2 |
| 19 | +}; |
| 20 | + |
| 21 | +/** |
| 22 | + * @brief Audio output to PWM pins for the ESP32. The ESP32 supports up to 16 |
| 23 | + * channels. |
| 24 | + * @ingroup platform |
| 25 | + * @author Phil Schatzmann |
| 26 | + * @copyright GPLv3 |
| 27 | + */ |
| 28 | + |
| 29 | +class PWMComplementaryDriverESP32 : public DriverPWMBase { |
| 30 | + public: |
| 31 | + // friend void pwm_callback(void*ptr); |
| 32 | + |
| 33 | + PWMComplementaryDriverESP32() { TRACED(); } |
| 34 | + |
| 35 | + // Ends the output |
| 36 | + virtual void end() { |
| 37 | + TRACED(); |
| 38 | + timer.end(); |
| 39 | + is_timer_started = false; |
| 40 | + for (int j = 0; j < pins.size(); j++) { |
| 41 | + mcpwm_stop(pins[j].unit, pins[j].timer); |
| 42 | + } |
| 43 | + deleteBuffer(); |
| 44 | + } |
| 45 | + |
| 46 | + /// when we get the first write -> we activate the timer to start with the |
| 47 | + /// output of data |
| 48 | + virtual void startTimer() { |
| 49 | + if (!timer) { |
| 50 | + TRACEI(); |
| 51 | + timer.begin(pwm_callback, effectiveOutputSampleRate(), HZ); |
| 52 | + actual_timer_frequency = effectiveOutputSampleRate(); |
| 53 | + is_timer_started = true; |
| 54 | + } |
| 55 | + } |
| 56 | + |
| 57 | + /// Setup complementary MCPWM |
| 58 | + virtual void setupPWM() { |
| 59 | + // frequency is driven by selected resolution |
| 60 | + if (audio_config.pwm_frequency == 0) { |
| 61 | + audio_config.pwm_frequency = frequency(audio_config.resolution) * 1000; |
| 62 | + } |
| 63 | + if (audio_config.channels > maxChannels()) { |
| 64 | + LOGE("Only %d complementary channels supported", maxChannels()); |
| 65 | + audio_config.channels = maxChannels(); |
| 66 | + } |
| 67 | + bool has_pairs = audio_config.pins().size() >= (size_t)(audio_config.channels * 2); |
| 68 | + if (!has_pairs) { |
| 69 | + LOGW("Expected %d pins for %d complementary channels, got %d - assuming consecutive pin+1 as low-side", audio_config.channels*2, audio_config.channels, audio_config.pins().size()); |
| 70 | + } |
| 71 | + pins.resize(audio_config.channels); |
| 72 | + for (int j = 0; j < audio_config.channels; j++) { |
| 73 | + pins[j].unit = (mcpwm_unit_t)(j / 3); |
| 74 | + pins[j].timer = (mcpwm_timer_t)(j % 3); |
| 75 | + if (pins[j].unit > MCPWM_UNIT_1) { LOGE("Too many channels for MCPWM: %d", j); break; } |
| 76 | + if (has_pairs) { |
| 77 | + pins[j].gpio_high = audio_config.pins()[j*2]; |
| 78 | + pins[j].gpio_low = audio_config.pins()[j*2 + 1]; |
| 79 | + } else { |
| 80 | + pins[j].gpio_high = audio_config.pins()[j]; |
| 81 | + pins[j].gpio_low = pins[j].gpio_high + 1; |
| 82 | + } |
| 83 | + mcpwm_io_signals_t sigA = (mcpwm_io_signals_t)(MCPWM0A + (pins[j].timer * 2)); |
| 84 | + mcpwm_io_signals_t sigB = (mcpwm_io_signals_t)(MCPWM0B + (pins[j].timer * 2)); |
| 85 | + esp_err_t err = mcpwm_gpio_init(pins[j].unit, sigA, pins[j].gpio_high); |
| 86 | + if (err != ESP_OK) LOGE("mcpwm_gpio_init high error=%d", (int)err); |
| 87 | + err = mcpwm_gpio_init(pins[j].unit, sigB, pins[j].gpio_low); |
| 88 | + if (err != ESP_OK) LOGE("mcpwm_gpio_init low error=%d", (int)err); |
| 89 | + mcpwm_config_t cfg; cfg.frequency = audio_config.pwm_frequency; cfg.cmpr_a = 0; cfg.cmpr_b = 0; cfg.counter_mode = MCPWM_UP_COUNTER; cfg.duty_mode = MCPWM_DUTY_MODE_0; |
| 90 | + err = mcpwm_init(pins[j].unit, pins[j].timer, &cfg); |
| 91 | + if (err != ESP_OK) LOGE("mcpwm_init error=%d", (int)err); |
| 92 | + if (audio_config.dead_time_us > 0) { |
| 93 | + uint32_t dead_ticks = audio_config.dead_time_us * 80u; // 80MHz APB |
| 94 | + uint32_t period_ticks = 80000000UL / audio_config.pwm_frequency; |
| 95 | + if (dead_ticks * 2 >= period_ticks) dead_ticks = period_ticks / 4; |
| 96 | + if (dead_ticks > 0) { |
| 97 | + err = mcpwm_deadtime_enable(pins[j].unit, pins[j].timer, MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE, dead_ticks, dead_ticks); |
| 98 | + if (err != ESP_OK) LOGE("deadtime_enable error=%d", (int)err); |
| 99 | + } |
| 100 | + } |
| 101 | + LOGI("Complementary PWM ch=%d unit=%d timer=%d high=%d low=%d freq=%u dead_us=%u", j,(int)pins[j].unit,(int)pins[j].timer,pins[j].gpio_high,pins[j].gpio_low,(unsigned)audio_config.pwm_frequency,(unsigned)audio_config.dead_time_us); |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + |
| 106 | + /// Setup ESP32 timer with callback |
| 107 | + virtual void setupTimer() { |
| 108 | + timer.setCallbackParameter(this); |
| 109 | + timer.setIsSave(false); |
| 110 | + |
| 111 | + if (actual_timer_frequency != effectiveOutputSampleRate()) { |
| 112 | + timer.end(); |
| 113 | + startTimer(); |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + /// write a pwm value to the indicated channel. The max value depends on the |
| 118 | + /// resolution |
| 119 | + virtual void pwmWrite(int channel, int value) { |
| 120 | + if (channel < 0 || channel >= pins.size()) return; |
| 121 | + int duty = (int)((int64_t)value * 100 / maxOutputValue()); |
| 122 | + if (duty < 0) duty = 0; else if (duty > 100) duty = 100; |
| 123 | + mcpwm_set_duty(pins[channel].unit, pins[channel].timer, MCPWM_OPR_A, duty); |
| 124 | + mcpwm_set_duty_type(pins[channel].unit, pins[channel].timer, MCPWM_OPR_A, MCPWM_DUTY_MODE_0); |
| 125 | + if (audio_config.dead_time_us == 0) { |
| 126 | + // software complementary: invert |
| 127 | + mcpwm_set_duty(pins[channel].unit, pins[channel].timer, MCPWM_OPR_B, 100 - duty); |
| 128 | + mcpwm_set_duty_type(pins[channel].unit, pins[channel].timer, MCPWM_OPR_B, MCPWM_DUTY_MODE_0); |
| 129 | + } |
| 130 | + } |
| 131 | + |
| 132 | + protected: |
| 133 | + Vector<PinInfoESP32Compl> pins; |
| 134 | + TimerAlarmRepeating timer; |
| 135 | + uint32_t actual_timer_frequency = 0; |
| 136 | + |
| 137 | + /// provides the max value for the indicated resulution |
| 138 | + int maxUnsignedValue(int resolution) { return pow(2, resolution); } |
| 139 | + |
| 140 | + virtual int maxChannels() { return 6; }; |
| 141 | + |
| 142 | + /// provides the max value for the configured resulution |
| 143 | + virtual int maxOutputValue() { |
| 144 | + return maxUnsignedValue(audio_config.resolution); |
| 145 | + } |
| 146 | + |
| 147 | + /// determiens the PWM frequency based on the requested resolution |
| 148 | + float frequency(int resolution) { |
| 149 | +// On ESP32S2 and S3, the frequncy seems off by a factor of 2 |
| 150 | +#if defined(ESP32S2) || defined(ESP32S3) |
| 151 | + switch (resolution) { |
| 152 | + case 7: |
| 153 | + return 312.5; |
| 154 | + case 8: |
| 155 | + return 156.25; |
| 156 | + case 9: |
| 157 | + return 78.125; |
| 158 | + case 10: |
| 159 | + return 39.0625; |
| 160 | + case 11: |
| 161 | + return 19.53125; |
| 162 | + } |
| 163 | + return 312.5; |
| 164 | +#else |
| 165 | + switch (resolution) { |
| 166 | + case 8: |
| 167 | + return 312.5; |
| 168 | + case 9: |
| 169 | + return 156.25; |
| 170 | + case 10: |
| 171 | + return 78.125; |
| 172 | + case 11: |
| 173 | + return 39.0625; |
| 174 | + } |
| 175 | + return 312.5; |
| 176 | +#endif |
| 177 | + } |
| 178 | + |
| 179 | + /// timer callback: write the next frame to the pins |
| 180 | + static void pwm_callback(void *ptr) { |
| 181 | + PWMComplementaryDriverESP32 *drv = (PWMComplementaryDriverESP32 *)ptr; |
| 182 | + if (drv != nullptr) { |
| 183 | + drv->playNextFrame(); |
| 184 | + } |
| 185 | + } |
| 186 | +}; |
| 187 | + |
| 188 | +} // namespace audio_tools |
| 189 | + |
| 190 | +#endif |
0 commit comments