|
| 1 | +# Copyright 2025 ETH Zurich and University of Bologna. |
| 2 | +# Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | +# |
| 5 | +# Federico Brancasi <[email protected]> |
| 6 | + |
| 7 | +import brevitas.nn as qnn |
| 8 | +import pytest |
| 9 | +import torch |
| 10 | +import torch.nn as nn |
| 11 | +import torchvision |
| 12 | +import torchvision.transforms as transforms |
| 13 | +from brevitas.fx.brevitas_tracer import symbolic_trace |
| 14 | +from brevitas.graph.calibrate import calibration_mode |
| 15 | +from brevitas.graph.quantize import preprocess_for_quantize, quantize |
| 16 | +from brevitas.graph.utils import replace_all_uses_except |
| 17 | +from brevitas.quant import ( |
| 18 | + Int8ActPerTensorFloat, |
| 19 | + Int8WeightPerTensorFloat, |
| 20 | + Int32Bias, |
| 21 | + Uint8ActPerTensorFloat, |
| 22 | +) |
| 23 | +from torch.utils.data import DataLoader, Subset |
| 24 | +from tqdm import tqdm |
| 25 | + |
| 26 | +from DeepQuant import brevitasToTrueQuant |
| 27 | +from Tests.Models.CCT import cct_2_3x2_32 |
| 28 | + |
| 29 | + |
| 30 | +def evaluateModel(model, dataLoader, evalDevice, name="Model"): |
| 31 | + model.eval() |
| 32 | + correct = 0 |
| 33 | + total = 0 |
| 34 | + |
| 35 | + with torch.no_grad(): |
| 36 | + for inputs, targets in tqdm(dataLoader, desc=f"Evaluating {name}"): |
| 37 | + isTQ = "TQ" in name |
| 38 | + |
| 39 | + if isTQ: |
| 40 | + # FBRANCASI: Process different batches for the TQ model |
| 41 | + for i in range(inputs.size(0)): |
| 42 | + singleInput = inputs[i : i + 1].to(evalDevice) |
| 43 | + singleOutput = model(singleInput) |
| 44 | + |
| 45 | + _, predicted = singleOutput.max(1) |
| 46 | + if predicted.item() == targets[i].item(): |
| 47 | + correct += 1 |
| 48 | + |
| 49 | + total += 1 |
| 50 | + else: |
| 51 | + inputs = inputs.to(evalDevice) |
| 52 | + targets = targets.to(evalDevice) |
| 53 | + output = model(inputs) |
| 54 | + |
| 55 | + _, predicted = output.max(1) |
| 56 | + correct += (predicted == targets).sum().item() |
| 57 | + total += targets.size(0) |
| 58 | + |
| 59 | + accuracy = 100.0 * correct / total |
| 60 | + print(f"{name} - Accuracy: {accuracy:.2f}% ({correct}/{total})") |
| 61 | + return accuracy |
| 62 | + |
| 63 | + |
| 64 | +def calibrateModel(model, calibLoader): |
| 65 | + model.eval() |
| 66 | + with torch.no_grad(), calibration_mode(model): |
| 67 | + for inputs, _ in tqdm(calibLoader, desc="Calibrating model"): |
| 68 | + inputs = inputs.to("cpu") |
| 69 | + model(inputs) |
| 70 | + print("Calibration completed.") |
| 71 | + |
| 72 | + |
| 73 | +def prepareFQCCT(model) -> nn.Module: |
| 74 | + """ |
| 75 | + Prepare a quantized CCT model for testing with export support. |
| 76 | + """ |
| 77 | + |
| 78 | + if not hasattr(model, "graph"): |
| 79 | + model = symbolic_trace(model) |
| 80 | + |
| 81 | + print("=== FIXING QUANTIZATION ISSUES ===") |
| 82 | + |
| 83 | + transpose_fixes = [] |
| 84 | + qkv_fixes = [] |
| 85 | + |
| 86 | + # FBRANCASI: Fix 1, Find transpose -> add patterns |
| 87 | + for node in model.graph.nodes: |
| 88 | + if node.op == "call_method" and node.target == "transpose": |
| 89 | + for user in node.users: |
| 90 | + if ( |
| 91 | + "add" in user.name |
| 92 | + or user.target in [torch.add] |
| 93 | + or (user.op == "call_method" and user.target in ["add", "add_"]) |
| 94 | + ): |
| 95 | + transpose_fixes.append((node, user)) |
| 96 | + break |
| 97 | + |
| 98 | + # FBRANCASI: Fix 2, Find QKV -> reshape patterns |
| 99 | + for node in model.graph.nodes: |
| 100 | + if node.op == "call_module" and "qkv" in node.target: |
| 101 | + for user in node.users: |
| 102 | + if user.op == "call_method" and user.target == "reshape": |
| 103 | + qkv_fixes.append((node, user)) |
| 104 | + break |
| 105 | + |
| 106 | + # FBRANCASI: Apply transpose fixes |
| 107 | + print(f"\nApplying {len(transpose_fixes)} transpose fixes...") |
| 108 | + for node, user in transpose_fixes: |
| 109 | + print(f" Fixing: {node.name} -> {user.name}") |
| 110 | + |
| 111 | + quant_identity = qnn.QuantIdentity( |
| 112 | + act_quant=Int8ActPerTensorFloat, return_quant_tensor=True |
| 113 | + ) |
| 114 | + |
| 115 | + quant_name = f"{node.name}_quant_fix" |
| 116 | + model.add_module(quant_name, quant_identity) |
| 117 | + |
| 118 | + with model.graph.inserting_after(node): |
| 119 | + quant_node = model.graph.call_module(quant_name, args=(node,)) |
| 120 | + |
| 121 | + # Replace uses |
| 122 | + replace_all_uses_except(node, quant_node, [quant_node]) |
| 123 | + |
| 124 | + # FBRANCASI: Apply QKV fixes |
| 125 | + print(f"\nApplying {len(qkv_fixes)} QKV fixes...") |
| 126 | + for node, reshape_user in qkv_fixes: |
| 127 | + print(f" Fixing: {node.name} -> {reshape_user.name}") |
| 128 | + |
| 129 | + quant_identity = qnn.QuantIdentity( |
| 130 | + act_quant=Int8ActPerTensorFloat, |
| 131 | + return_quant_tensor=False, # FBRANCASI: return regular tensor for reshape |
| 132 | + ) |
| 133 | + |
| 134 | + quant_name = f"{node.name}_reshape_fix" |
| 135 | + model.add_module(quant_name, quant_identity) |
| 136 | + # mark this QuantIdentity as “reshape fix” |
| 137 | + quant_identity._is_reshape_fix = True |
| 138 | + |
| 139 | + with model.graph.inserting_after(node): |
| 140 | + quant_node = model.graph.call_module(quant_name, args=(node,)) |
| 141 | + |
| 142 | + reshape_user.update_arg(0, quant_node) |
| 143 | + |
| 144 | + model.recompile() |
| 145 | + model.graph.lint() |
| 146 | + |
| 147 | + print("\n=== GRAPH MODIFICATION COMPLETE ===") |
| 148 | + |
| 149 | + computeLayerMap = { |
| 150 | + nn.Conv2d: ( |
| 151 | + qnn.QuantConv2d, |
| 152 | + { |
| 153 | + "input_quant": Int8ActPerTensorFloat, |
| 154 | + "weight_quant": Int8WeightPerTensorFloat, |
| 155 | + "output_quant": Int8ActPerTensorFloat, |
| 156 | + "bias_quant": Int32Bias, |
| 157 | + "bias": False, |
| 158 | + "return_quant_tensor": True, |
| 159 | + "output_bit_width": 8, |
| 160 | + "weight_bit_width": 4, |
| 161 | + }, |
| 162 | + ), |
| 163 | + nn.Linear: ( |
| 164 | + qnn.QuantLinear, |
| 165 | + { |
| 166 | + "input_quant": Int8ActPerTensorFloat, |
| 167 | + "weight_quant": Int8WeightPerTensorFloat, |
| 168 | + "output_quant": Int8ActPerTensorFloat, |
| 169 | + "bias_quant": Int32Bias, |
| 170 | + "return_quant_tensor": True, |
| 171 | + "output_bit_width": 8, |
| 172 | + "weight_bit_width": 4, |
| 173 | + }, |
| 174 | + ), |
| 175 | + } |
| 176 | + |
| 177 | + quantActMap = {} |
| 178 | + |
| 179 | + quantIdentityMap = { |
| 180 | + "signed": ( |
| 181 | + qnn.QuantIdentity, |
| 182 | + { |
| 183 | + "act_quant": Int8ActPerTensorFloat, |
| 184 | + "return_quant_tensor": True, |
| 185 | + "bit_width": 8, |
| 186 | + }, |
| 187 | + ), |
| 188 | + "unsigned": ( |
| 189 | + qnn.QuantIdentity, |
| 190 | + { |
| 191 | + "act_quant": Uint8ActPerTensorFloat, |
| 192 | + "return_quant_tensor": True, |
| 193 | + "bit_width": 8, |
| 194 | + }, |
| 195 | + ), |
| 196 | + } |
| 197 | + |
| 198 | + model = preprocess_for_quantize( |
| 199 | + model, |
| 200 | + equalize_iters=10, |
| 201 | + equalize_scale_computation="range", |
| 202 | + trace_model=False, # FBRANCASI: Already traced |
| 203 | + ) |
| 204 | + |
| 205 | + quantizedModel = quantize( |
| 206 | + graph_model=model, |
| 207 | + compute_layer_map=computeLayerMap, |
| 208 | + quant_act_map=quantActMap, |
| 209 | + quant_identity_map=quantIdentityMap, |
| 210 | + ) |
| 211 | + |
| 212 | + return quantizedModel |
| 213 | + |
| 214 | + |
| 215 | +@pytest.mark.ModelTests |
| 216 | +def deepQuantTestCCT(): |
| 217 | + torch.manual_seed(42) |
| 218 | + |
| 219 | + # FBRANCASI: Setup CIFAR-10 dataset |
| 220 | + transformsVal = transforms.Compose( |
| 221 | + [ |
| 222 | + transforms.ToTensor(), |
| 223 | + transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), |
| 224 | + ] |
| 225 | + ) |
| 226 | + |
| 227 | + dataset = torchvision.datasets.CIFAR10( |
| 228 | + root="./data", train=False, download=True, transform=transformsVal |
| 229 | + ) |
| 230 | + |
| 231 | + DATASET_LIMIT = 256 |
| 232 | + dataset = Subset(dataset, list(range(DATASET_LIMIT))) |
| 233 | + print(f"Validation dataset size set to {len(dataset)} images.") |
| 234 | + |
| 235 | + calibLoader = DataLoader( |
| 236 | + Subset(dataset, list(range(128))), batch_size=32, shuffle=False, pin_memory=True |
| 237 | + ) |
| 238 | + valLoader = DataLoader(dataset, batch_size=32, shuffle=False, pin_memory=True) |
| 239 | + |
| 240 | + # FBRANCASI: Device setup |
| 241 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 242 | + device = torch.device("mps" if torch.backends.mps.is_available() else device) |
| 243 | + print(f"Using device: {device}") |
| 244 | + |
| 245 | + # FBRANCASI: Load original floating point model |
| 246 | + originalModel = cct_2_3x2_32() |
| 247 | + checkpointPath = "/Users/federicobrancasi/Documents/DeepQuant/Tests/Data/checkpoint_epoch_200_cct2_cifar10.pth" |
| 248 | + checkpoint = torch.load(checkpointPath, map_location="cpu") |
| 249 | + originalModel.load_state_dict(checkpoint["model_state_dict"]) |
| 250 | + originalModel = originalModel.eval().to(device) |
| 251 | + print("Original CCT-2 loaded from checkpoint.") |
| 252 | + |
| 253 | + print("Evaluating original model...") |
| 254 | + originalAccuracy = evaluateModel(originalModel, valLoader, device, "Original CCT-2") |
| 255 | + |
| 256 | + print("Preparing and quantizing CCT-2...") |
| 257 | + FQModel = prepareFQCCT(originalModel.to("cpu")) |
| 258 | + |
| 259 | + print("Calibrating FQ model...") |
| 260 | + calibrateModel(FQModel, calibLoader) |
| 261 | + |
| 262 | + print("Evaluating FQ model...") |
| 263 | + # FBRANCASI: Use CPU for brevitas models |
| 264 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 265 | + FQAccuracy = evaluateModel(FQModel, valLoader, device, "FQ CCT-2") |
| 266 | + |
| 267 | + sampleInput = torch.randn(1, 3, 32, 32).to("cpu") |
| 268 | + TQModel = brevitasToTrueQuant(FQModel, sampleInput, debug=True) |
| 269 | + |
| 270 | + numParameters = sum(p.numel() for p in TQModel.parameters()) |
| 271 | + print(f"Number of parameters: {numParameters:,}") |
| 272 | + |
| 273 | + print("Evaluating TQ model...") |
| 274 | + TQAccuracy = evaluateModel(TQModel, valLoader, device, "TQ CCT-2") |
| 275 | + |
| 276 | + print("\nComparison Summary:") |
| 277 | + print(f"{'Model':<25} {'Accuracy':<25}") |
| 278 | + print("-" * 50) |
| 279 | + print(f"{'Original CCT-2':<25} {originalAccuracy:<24.2f}") |
| 280 | + print(f"{'FQ CCT-2':<25} {FQAccuracy:<24.2f}") |
| 281 | + print(f"{'TQ CCT-2':<25} {TQAccuracy:<24.2f}") |
| 282 | + print(f"{'FQ Drop':<25} {originalAccuracy - FQAccuracy:<24.2f}") |
| 283 | + print(f"{'TQ Drop':<25} {originalAccuracy - TQAccuracy:<24.2f}") |
| 284 | + |
| 285 | + if abs(FQAccuracy - TQAccuracy) > 5.0: |
| 286 | + print( |
| 287 | + f"Warning: Large accuracy drop between FQ and TQ models. " |
| 288 | + f"Difference: {abs(FQAccuracy - TQAccuracy):.2f}%" |
| 289 | + ) |
0 commit comments