|
| 1 | +from torch.hub import load_state_dict_from_url |
| 2 | +import torch.nn as nn |
| 3 | +from .utils.transformers import TransformerClassifier |
| 4 | +from .utils.tokenizer import Tokenizer |
| 5 | +from .utils.helpers import pe_check, fc_check |
| 6 | + |
| 7 | +try: |
| 8 | + from timm.models.registry import register_model |
| 9 | +except ImportError: |
| 10 | + from .registry import register_model |
| 11 | + |
| 12 | +model_urls = { |
| 13 | + 'cct_7_3x1_32': |
| 14 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_7_3x1_32_cifar10_300epochs.pth', |
| 15 | + 'cct_7_3x1_32_sine': |
| 16 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_7_3x1_32_sine_cifar10_5000epochs.pth', |
| 17 | + 'cct_7_3x1_32_c100': |
| 18 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_7_3x1_32_cifar100_300epochs.pth', |
| 19 | + 'cct_7_3x1_32_sine_c100': |
| 20 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_7_3x1_32_sine_cifar100_5000epochs.pth', |
| 21 | + 'cct_7_7x2_224_sine': |
| 22 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_7_7x2_224_flowers102.pth', |
| 23 | + 'cct_14_7x2_224': |
| 24 | + 'https://shi-labs.com/projects/cct/checkpoints/pretrained/cct_14_7x2_224_imagenet.pth', |
| 25 | + 'cct_14_7x2_384': |
| 26 | + 'https://shi-labs.com/projects/cct/checkpoints/finetuned/cct_14_7x2_384_imagenet.pth', |
| 27 | + 'cct_14_7x2_384_fl': |
| 28 | + 'https://shi-labs.com/projects/cct/checkpoints/finetuned/cct_14_7x2_384_flowers102.pth', |
| 29 | +} |
| 30 | + |
| 31 | + |
| 32 | +class CCT(nn.Module): |
| 33 | + def __init__(self, |
| 34 | + img_size=224, |
| 35 | + embedding_dim=768, |
| 36 | + n_input_channels=3, |
| 37 | + n_conv_layers=1, |
| 38 | + kernel_size=7, |
| 39 | + stride=2, |
| 40 | + padding=3, |
| 41 | + pooling_kernel_size=3, |
| 42 | + pooling_stride=2, |
| 43 | + pooling_padding=1, |
| 44 | + dropout=0., |
| 45 | + attention_dropout=0.1, |
| 46 | + stochastic_depth=0.1, |
| 47 | + num_layers=14, |
| 48 | + num_heads=6, |
| 49 | + mlp_ratio=4.0, |
| 50 | + num_classes=1000, |
| 51 | + positional_embedding='learnable', |
| 52 | + *args, **kwargs): |
| 53 | + super(CCT, self).__init__() |
| 54 | + |
| 55 | + self.tokenizer = Tokenizer(n_input_channels=n_input_channels, |
| 56 | + n_output_channels=embedding_dim, |
| 57 | + kernel_size=kernel_size, |
| 58 | + stride=stride, |
| 59 | + padding=padding, |
| 60 | + pooling_kernel_size=pooling_kernel_size, |
| 61 | + pooling_stride=pooling_stride, |
| 62 | + pooling_padding=pooling_padding, |
| 63 | + max_pool=True, |
| 64 | + activation=nn.ReLU, |
| 65 | + n_conv_layers=n_conv_layers, |
| 66 | + conv_bias=False) |
| 67 | + |
| 68 | + self.classifier = TransformerClassifier( |
| 69 | + sequence_length=self.tokenizer.sequence_length(n_channels=n_input_channels, |
| 70 | + height=img_size, |
| 71 | + width=img_size), |
| 72 | + embedding_dim=embedding_dim, |
| 73 | + seq_pool=True, |
| 74 | + dropout=dropout, |
| 75 | + attention_dropout=attention_dropout, |
| 76 | + stochastic_depth=stochastic_depth, |
| 77 | + num_layers=num_layers, |
| 78 | + num_heads=num_heads, |
| 79 | + mlp_ratio=mlp_ratio, |
| 80 | + num_classes=num_classes, |
| 81 | + positional_embedding=positional_embedding |
| 82 | + ) |
| 83 | + |
| 84 | + def forward(self, x): |
| 85 | + x = self.tokenizer(x) |
| 86 | + return self.classifier(x) |
| 87 | + |
| 88 | + |
| 89 | +def _cct(arch, pretrained, progress, |
| 90 | + num_layers, num_heads, mlp_ratio, embedding_dim, |
| 91 | + kernel_size=3, stride=None, padding=None, |
| 92 | + positional_embedding='learnable', |
| 93 | + *args, **kwargs): |
| 94 | + stride = stride if stride is not None else max(1, (kernel_size // 2) - 1) |
| 95 | + padding = padding if padding is not None else max(1, (kernel_size // 2)) |
| 96 | + model = CCT(num_layers=num_layers, |
| 97 | + num_heads=num_heads, |
| 98 | + mlp_ratio=mlp_ratio, |
| 99 | + embedding_dim=embedding_dim, |
| 100 | + kernel_size=kernel_size, |
| 101 | + stride=stride, |
| 102 | + padding=padding, |
| 103 | + *args, **kwargs) |
| 104 | + |
| 105 | + if pretrained: |
| 106 | + if arch in model_urls: |
| 107 | + state_dict = load_state_dict_from_url(model_urls[arch], |
| 108 | + progress=progress) |
| 109 | + if positional_embedding == 'learnable': |
| 110 | + state_dict = pe_check(model, state_dict) |
| 111 | + elif positional_embedding == 'sine': |
| 112 | + state_dict['classifier.positional_emb'] = model.state_dict()['classifier.positional_emb'] |
| 113 | + state_dict = fc_check(model, state_dict) |
| 114 | + model.load_state_dict(state_dict) |
| 115 | + else: |
| 116 | + raise RuntimeError(f'Variant {arch} does not yet have pretrained weights.') |
| 117 | + return model |
| 118 | + |
| 119 | + |
| 120 | +@register_model |
| 121 | +def cct_2(arch, pretrained, progress, *args, **kwargs): |
| 122 | + return _cct(arch, pretrained, progress, num_layers=2, num_heads=2, mlp_ratio=1, embedding_dim=128, |
| 123 | + *args, **kwargs) |
| 124 | + |
| 125 | + |
| 126 | +@register_model |
| 127 | +def cct_4(arch, pretrained, progress, *args, **kwargs): |
| 128 | + return _cct(arch, pretrained, progress, num_layers=4, num_heads=2, mlp_ratio=1, embedding_dim=128, |
| 129 | + *args, **kwargs) |
| 130 | + |
| 131 | + |
| 132 | +@register_model |
| 133 | +def cct_6(arch, pretrained, progress, *args, **kwargs): |
| 134 | + return _cct(arch, pretrained, progress, num_layers=6, num_heads=4, mlp_ratio=2, embedding_dim=256, |
| 135 | + *args, **kwargs) |
| 136 | + |
| 137 | + |
| 138 | +@register_model |
| 139 | +def cct_7(arch, pretrained, progress, *args, **kwargs): |
| 140 | + return _cct(arch, pretrained, progress, num_layers=7, num_heads=4, mlp_ratio=2, embedding_dim=256, |
| 141 | + *args, **kwargs) |
| 142 | + |
| 143 | + |
| 144 | +@register_model |
| 145 | +def cct_14(arch, pretrained, progress, *args, **kwargs): |
| 146 | + return _cct(arch, pretrained, progress, num_layers=14, num_heads=6, mlp_ratio=3, embedding_dim=384, |
| 147 | + *args, **kwargs) |
| 148 | + |
| 149 | + |
| 150 | +@register_model |
| 151 | +def cct_2_3x2_32(pretrained=False, progress=False, |
| 152 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 153 | + *args, **kwargs): |
| 154 | + return cct_2('cct_2_3x2_32', pretrained, progress, |
| 155 | + kernel_size=3, n_conv_layers=2, |
| 156 | + img_size=img_size, positional_embedding=positional_embedding, |
| 157 | + num_classes=num_classes, |
| 158 | + *args, **kwargs) |
| 159 | + |
| 160 | + |
| 161 | +@register_model |
| 162 | +def cct_2_3x2_32_sine(pretrained=False, progress=False, |
| 163 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 164 | + *args, **kwargs): |
| 165 | + return cct_2('cct_2_3x2_32_sine', pretrained, progress, |
| 166 | + kernel_size=3, n_conv_layers=2, |
| 167 | + img_size=img_size, positional_embedding=positional_embedding, |
| 168 | + num_classes=num_classes, |
| 169 | + *args, **kwargs) |
| 170 | + |
| 171 | + |
| 172 | +@register_model |
| 173 | +def cct_4_3x2_32(pretrained=False, progress=False, |
| 174 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 175 | + *args, **kwargs): |
| 176 | + return cct_4('cct_4_3x2_32', pretrained, progress, |
| 177 | + kernel_size=3, n_conv_layers=2, |
| 178 | + img_size=img_size, positional_embedding=positional_embedding, |
| 179 | + num_classes=num_classes, |
| 180 | + *args, **kwargs) |
| 181 | + |
| 182 | + |
| 183 | +@register_model |
| 184 | +def cct_4_3x2_32_sine(pretrained=False, progress=False, |
| 185 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 186 | + *args, **kwargs): |
| 187 | + return cct_4('cct_4_3x2_32_sine', pretrained, progress, |
| 188 | + kernel_size=3, n_conv_layers=2, |
| 189 | + img_size=img_size, positional_embedding=positional_embedding, |
| 190 | + num_classes=num_classes, |
| 191 | + *args, **kwargs) |
| 192 | + |
| 193 | + |
| 194 | +@register_model |
| 195 | +def cct_6_3x1_32(pretrained=False, progress=False, |
| 196 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 197 | + *args, **kwargs): |
| 198 | + return cct_6('cct_6_3x1_32', pretrained, progress, |
| 199 | + kernel_size=3, n_conv_layers=1, |
| 200 | + img_size=img_size, positional_embedding=positional_embedding, |
| 201 | + num_classes=num_classes, |
| 202 | + *args, **kwargs) |
| 203 | + |
| 204 | + |
| 205 | +@register_model |
| 206 | +def cct_6_3x1_32_sine(pretrained=False, progress=False, |
| 207 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 208 | + *args, **kwargs): |
| 209 | + return cct_6('cct_6_3x1_32_sine', pretrained, progress, |
| 210 | + kernel_size=3, n_conv_layers=1, |
| 211 | + img_size=img_size, positional_embedding=positional_embedding, |
| 212 | + num_classes=num_classes, |
| 213 | + *args, **kwargs) |
| 214 | + |
| 215 | + |
| 216 | +@register_model |
| 217 | +def cct_6_3x2_32(pretrained=False, progress=False, |
| 218 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 219 | + *args, **kwargs): |
| 220 | + return cct_6('cct_6_3x2_32', pretrained, progress, |
| 221 | + kernel_size=3, n_conv_layers=2, |
| 222 | + img_size=img_size, positional_embedding=positional_embedding, |
| 223 | + num_classes=num_classes, |
| 224 | + *args, **kwargs) |
| 225 | + |
| 226 | + |
| 227 | +@register_model |
| 228 | +def cct_6_3x2_32_sine(pretrained=False, progress=False, |
| 229 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 230 | + *args, **kwargs): |
| 231 | + return cct_6('cct_6_3x2_32_sine', pretrained, progress, |
| 232 | + kernel_size=3, n_conv_layers=2, |
| 233 | + img_size=img_size, positional_embedding=positional_embedding, |
| 234 | + num_classes=num_classes, |
| 235 | + *args, **kwargs) |
| 236 | + |
| 237 | + |
| 238 | +@register_model |
| 239 | +def cct_7_3x1_32(pretrained=False, progress=False, |
| 240 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 241 | + *args, **kwargs): |
| 242 | + return cct_7('cct_7_3x1_32', pretrained, progress, |
| 243 | + kernel_size=3, n_conv_layers=1, |
| 244 | + img_size=img_size, positional_embedding=positional_embedding, |
| 245 | + num_classes=num_classes, |
| 246 | + *args, **kwargs) |
| 247 | + |
| 248 | + |
| 249 | +@register_model |
| 250 | +def cct_7_3x1_32_sine(pretrained=False, progress=False, |
| 251 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 252 | + *args, **kwargs): |
| 253 | + return cct_7('cct_7_3x1_32_sine', pretrained, progress, |
| 254 | + kernel_size=3, n_conv_layers=1, |
| 255 | + img_size=img_size, positional_embedding=positional_embedding, |
| 256 | + num_classes=num_classes, |
| 257 | + *args, **kwargs) |
| 258 | + |
| 259 | + |
| 260 | +@register_model |
| 261 | +def cct_7_3x1_32_c100(pretrained=False, progress=False, |
| 262 | + img_size=32, positional_embedding='learnable', num_classes=100, |
| 263 | + *args, **kwargs): |
| 264 | + return cct_7('cct_7_3x1_32_c100', pretrained, progress, |
| 265 | + kernel_size=3, n_conv_layers=1, |
| 266 | + img_size=img_size, positional_embedding=positional_embedding, |
| 267 | + num_classes=num_classes, |
| 268 | + *args, **kwargs) |
| 269 | + |
| 270 | + |
| 271 | +@register_model |
| 272 | +def cct_7_3x1_32_sine_c100(pretrained=False, progress=False, |
| 273 | + img_size=32, positional_embedding='sine', num_classes=100, |
| 274 | + *args, **kwargs): |
| 275 | + return cct_7('cct_7_3x1_32_sine_c100', pretrained, progress, |
| 276 | + kernel_size=3, n_conv_layers=1, |
| 277 | + img_size=img_size, positional_embedding=positional_embedding, |
| 278 | + num_classes=num_classes, |
| 279 | + *args, **kwargs) |
| 280 | + |
| 281 | + |
| 282 | +@register_model |
| 283 | +def cct_7_3x2_32(pretrained=False, progress=False, |
| 284 | + img_size=32, positional_embedding='learnable', num_classes=10, |
| 285 | + *args, **kwargs): |
| 286 | + return cct_7('cct_7_3x2_32', pretrained, progress, |
| 287 | + kernel_size=3, n_conv_layers=2, |
| 288 | + img_size=img_size, positional_embedding=positional_embedding, |
| 289 | + num_classes=num_classes, |
| 290 | + *args, **kwargs) |
| 291 | + |
| 292 | + |
| 293 | +@register_model |
| 294 | +def cct_7_3x2_32_sine(pretrained=False, progress=False, |
| 295 | + img_size=32, positional_embedding='sine', num_classes=10, |
| 296 | + *args, **kwargs): |
| 297 | + return cct_7('cct_7_3x2_32_sine', pretrained, progress, |
| 298 | + kernel_size=3, n_conv_layers=2, |
| 299 | + img_size=img_size, positional_embedding=positional_embedding, |
| 300 | + num_classes=num_classes, |
| 301 | + *args, **kwargs) |
| 302 | + |
| 303 | + |
| 304 | +@register_model |
| 305 | +def cct_7_7x2_224(pretrained=False, progress=False, |
| 306 | + img_size=224, positional_embedding='learnable', num_classes=102, |
| 307 | + *args, **kwargs): |
| 308 | + return cct_7('cct_7_7x2_224', pretrained, progress, |
| 309 | + kernel_size=7, n_conv_layers=2, |
| 310 | + img_size=img_size, positional_embedding=positional_embedding, |
| 311 | + num_classes=num_classes, |
| 312 | + *args, **kwargs) |
| 313 | + |
| 314 | + |
| 315 | +@register_model |
| 316 | +def cct_7_7x2_224_sine(pretrained=False, progress=False, |
| 317 | + img_size=224, positional_embedding='sine', num_classes=102, |
| 318 | + *args, **kwargs): |
| 319 | + return cct_7('cct_7_7x2_224_sine', pretrained, progress, |
| 320 | + kernel_size=7, n_conv_layers=2, |
| 321 | + img_size=img_size, positional_embedding=positional_embedding, |
| 322 | + num_classes=num_classes, |
| 323 | + *args, **kwargs) |
| 324 | + |
| 325 | + |
| 326 | +@register_model |
| 327 | +def cct_14_7x2_224(pretrained=False, progress=False, |
| 328 | + img_size=224, positional_embedding='learnable', num_classes=1000, |
| 329 | + *args, **kwargs): |
| 330 | + return cct_14('cct_14_7x2_224', pretrained, progress, |
| 331 | + kernel_size=7, n_conv_layers=2, |
| 332 | + img_size=img_size, positional_embedding=positional_embedding, |
| 333 | + num_classes=num_classes, |
| 334 | + *args, **kwargs) |
| 335 | + |
| 336 | + |
| 337 | +@register_model |
| 338 | +def cct_14_7x2_384(pretrained=False, progress=False, |
| 339 | + img_size=384, positional_embedding='learnable', num_classes=1000, |
| 340 | + *args, **kwargs): |
| 341 | + return cct_14('cct_14_7x2_384', pretrained, progress, |
| 342 | + kernel_size=7, n_conv_layers=2, |
| 343 | + img_size=img_size, positional_embedding=positional_embedding, |
| 344 | + num_classes=num_classes, |
| 345 | + *args, **kwargs) |
| 346 | + |
| 347 | + |
| 348 | +@register_model |
| 349 | +def cct_14_7x2_384_fl(pretrained=False, progress=False, |
| 350 | + img_size=384, positional_embedding='learnable', num_classes=102, |
| 351 | + *args, **kwargs): |
| 352 | + return cct_14('cct_14_7x2_384_fl', pretrained, progress, |
| 353 | + kernel_size=7, n_conv_layers=2, |
| 354 | + img_size=img_size, positional_embedding=positional_embedding, |
| 355 | + num_classes=num_classes, |
| 356 | + *args, **kwargs) |
0 commit comments