- 
                Notifications
    
You must be signed in to change notification settings  - Fork 0
 
Description
⚡ Create Macro-Driven Tool Discovery System for AI Agent Integration
Problem Statement
Based on analysis of the framework and 2025 AI agent integration patterns, there's a gap in intelligent tool discovery and composition:
Current Limitations:
- Tools are static and individually defined
 - No automatic tool grouping or workflow discovery
 - AI agents must know exact tool names and parameters
 - Missing tool relationship mapping for complex workflows
 - No support for tool composition patterns recommended in 2025 MCP best practices
 
AI Agent Integration Challenges:
- "Avoid mapping every API endpoint to a new MCP tool" - current approach does exactly this
 - Tool grouping and workflow chaining are manual
 - Intentional tool design requires extensive boilerplate
 - Discovery metadata for AI agents is insufficient
 
Motivation
2025 MCP Best Practices Research
"Intentional Tool Design: Avoid mapping every API endpoint to a new MCP tool. Instead, group related tasks and design higher-level functions."
"Workflow Chaining: Use macros and chaining that trigger complex workflows via a single instruction."
AI Agent Requirements
- Self-discovering tools that expose their capabilities
 - Semantic tool grouping for related operations
 - Workflow composition for multi-step processes
 - Intent-based tool selection rather than exact name matching
 - Tool relationship mapping for dependency resolution
 
Framework Competitive Analysis
- Python MCP SDK: Uses decorators with automatic discovery
 - Other frameworks: Provide tool composition and semantic grouping
 - PulseEngine gap: Missing intelligent discovery layer
 
Solution Design
1. Enhanced Tool Discovery Macros
#[mcp_tool_group(
    name = "file_operations",
    description = "Complete file management workflow",
    intent = ["file management", "document handling", "storage operations"]
)]
impl FileManager {
    #[mcp_tool(
        workflow_step = "discovery",
        dependencies = [],
        outputs = ["file_list"]
    )]
    pub async fn list_files(&self, path: String) -> Result<Vec<FileInfo>> {
        // Implementation
    }
    
    #[mcp_tool(
        workflow_step = "action", 
        dependencies = ["list_files"],
        outputs = ["processed_file"]
    )]
    pub async fn process_file(&self, file_path: String) -> Result<ProcessedFile> {
        // Implementation  
    }
    
    #[mcp_tool(
        workflow_step = "completion",
        dependencies = ["process_file"],
        outputs = ["workflow_result"]
    )]
    pub async fn finalize_workflow(&self, processed: ProcessedFile) -> Result<WorkflowResult> {
        // Implementation
    }
}2. Intelligent Tool Discovery
#[derive(Debug, Serialize, Deserialize)]
pub struct ToolDiscoveryInfo {
    pub tool_id: String,
    pub name: String,
    pub description: String,
    pub intent_keywords: Vec<String>,
    pub workflow_group: Option<String>,
    pub dependencies: Vec<String>,
    pub outputs: Vec<String>,
    pub complexity_score: u8,
    pub usage_patterns: Vec<UsagePattern>,
}
pub struct ToolDiscoveryEngine {
    tools: HashMap<String, ToolDiscoveryInfo>,
    workflow_graphs: HashMap<String, WorkflowGraph>,
    intent_index: IntentIndex,
}
impl ToolDiscoveryEngine {
    pub async fn discover_tools_for_intent(&self, intent: &str) -> Result<Vec<ToolRecommendation>> {
        // Semantic matching of intent to available tools
        let candidates = self.intent_index.search(intent);
        
        // Rank by relevance and complexity
        let ranked = self.rank_tools_by_intent(candidates, intent);
        
        // Group into workflows if applicable
        let workflows = self.identify_workflows(&ranked);
        
        Ok(workflows)
    }
    
    pub async fn suggest_tool_chain(&self, starting_tool: &str, desired_outcome: &str) -> Result<Vec<ToolChain>> {
        // Find workflow paths from starting tool to outcome
        let graph = self.workflow_graphs.get(starting_tool)?;
        let paths = graph.find_paths_to_outcome(desired_outcome);
        
        Ok(paths)
    }
}3. Semantic Tool Composition
#[mcp_workflow(
    name = "data_processing_pipeline",
    description = "Complete data ingestion, processing, and output workflow",
    intent = ["data processing", "ETL", "data pipeline"]
)]
pub struct DataProcessingWorkflow;
impl DataProcessingWorkflow {
    #[mcp_workflow_entrypoint]
    pub async fn execute_pipeline(&self, input: DataInput) -> Result<WorkflowResult> {
        // Auto-generated workflow execution
        let ingested = self.ingest_data(input).await?;
        let processed = self.process_data(ingested).await?;
        let output = self.output_data(processed).await?;
        
        Ok(WorkflowResult {
            data: output,
            workflow_id: self.workflow_id(),
            execution_time: self.execution_duration(),
            tools_used: self.get_tools_chain(),
        })
    }
    
    // Individual steps auto-discovered from tool_group
    async fn ingest_data(&self, input: DataInput) -> Result<IngestedData> { ... }
    async fn process_data(&self, data: IngestedData) -> Result<ProcessedData> { ... }
    async fn output_data(&self, data: ProcessedData) -> Result<OutputData> { ... }
}4. AI Agent Discovery API
// New endpoint for AI agent tool discovery
#[mcp_discovery_endpoint]
impl DiscoveryHandler {
    pub async fn discover_tools(&self, query: ToolDiscoveryQuery) -> Result<DiscoveryResponse> {
        match query {
            ToolDiscoveryQuery::ByIntent(intent) => {
                self.discovery_engine.discover_tools_for_intent(&intent).await
            }
            ToolDiscoveryQuery::ByCapability(capability) => {
                self.discovery_engine.find_tools_with_capability(&capability).await
            }
            ToolDiscoveryQuery::WorkflowChain { start, end } => {
                self.discovery_engine.suggest_tool_chain(&start, &end).await
            }
        }
    }
    
    pub async fn get_workflow_suggestions(&self, context: WorkflowContext) -> Result<Vec<WorkflowSuggestion>> {
        // AI-friendly workflow recommendations
        self.discovery_engine.suggest_workflows_for_context(context).await
    }
}5. Auto-Generated Tool Schema with Relationships
// Enhanced tool schema generation
pub struct EnhancedToolSchema {
    pub basic_schema: ToolSchema,
    pub discovery_metadata: ToolDiscoveryInfo,
    pub relationships: ToolRelationships,
    pub ai_hints: AIAgentHints,
}
#[derive(Debug, Serialize)]
pub struct AIAgentHints {
    pub when_to_use: String,
    pub common_patterns: Vec<String>,
    pub related_workflows: Vec<String>,
    pub complexity_guidance: ComplexityGuidance,
}Implementation Plan
Phase 1: Core Discovery Engine (Week 1)
-  Create 
pulseengine-mcp-discoverycrate -  Implement 
ToolDiscoveryEnginewith semantic matching -  Add 
#[mcp_tool_group]macro for grouping tools - Create tool relationship mapping system
 - Basic intent-based tool discovery
 
Phase 2: Workflow Composition (Week 2)
-  Implement 
#[mcp_workflow]macro for complex workflows - Add workflow dependency resolution
 - Create workflow execution engine
 - Add tool chaining and composition logic
 - Implement workflow graph generation
 
Phase 3: AI Agent Integration (Week 3)
- Create discovery endpoint for AI agents
 - Implement semantic tool search API
 - Add workflow suggestion system
 - Create AI-friendly tool metadata generation
 - Add intent keyword indexing
 
Phase 4: Advanced Features (Week 4)
- Add machine learning-based tool recommendation
 - Implement usage pattern analysis
 - Create tool performance optimization hints
 - Add A/B testing for tool discovery
 - Comprehensive documentation and examples
 
Features to Implement
1. Semantic Tool Grouping
#[mcp_tool_group(
    intent = ["file operations", "document management"],
    complexity = "medium",
    related_groups = ["data_processing", "storage_management"]
)]
impl DocumentManager {
    // Tools automatically grouped and discoverable
}2. Intent-Based Discovery
// AI agent can query: "I need to process financial data"
let tools = discovery_engine
    .discover_tools_for_intent("financial data processing")
    .await?;
// Returns ranked list of relevant tools and workflows3. Workflow Composition
// Automatically compose workflows from available tools
let workflow = discovery_engine
    .compose_workflow("data ingestion", "report generation")
    .await?;
// Returns optimized workflow with tool dependencies4. Tool Relationship Mapping
pub struct ToolRelationship {
    pub relationship_type: RelationshipType, // Prerequisite, Alternative, Complement
    pub related_tool: String,
    pub confidence_score: f32,
    pub usage_frequency: u32,
}Acceptance Criteria
Discovery System
- Tools can be discovered by intent keywords
 - Tool grouping works automatically via macros
 - Workflow composition generates valid tool chains
 - Tool relationships are accurately mapped
 - Performance: <10ms for tool discovery queries
 
AI Agent Integration
- AI agents can discover tools without knowing exact names
 - Workflow suggestions are semantically relevant
 - Tool complexity is communicated clearly
 - Usage patterns guide AI agent decisions
 - Discovery API is well-documented for AI integration
 
Developer Experience
- Macro-driven approach requires minimal boilerplate
 - Tool discovery works out-of-the-box
 - Clear documentation with examples
 - Migration path from current tool definitions
 - Performance impact is negligible
 
Framework Integration
-  Works with existing 
#[mcp_tools]macro - Compatible with all transport layers
 - Integrates with security middleware
 - Maintains backward compatibility
 - Extensible for future AI capabilities
 
Configuration Examples
Simple Tool Discovery
#[mcp_server(name = "Smart Server", discovery = true)]
struct SmartServer;
#[mcp_tool_group(intent = ["data analysis", "statistics"])]
impl DataAnalyzer {
    #[mcp_tool(complexity = "low")]
    pub async fn basic_stats(&self, data: Vec<f64>) -> Result<Stats> { ... }
    
    #[mcp_tool(complexity = "high", depends_on = ["basic_stats"])]  
    pub async fn advanced_analysis(&self, stats: Stats) -> Result<Analysis> { ... }
}AI Agent Query Examples
// Natural language tool discovery
let response = client
    .post("/mcp/discover")
    .json(&json!({
        "intent": "I need to analyze financial data and generate a report",
        "context": {
            "data_type": "financial",
            "output_format": "report"
        }
    }))
    .send()
    .await?;
// Returns structured workflow recommendationsReferences & Research
2025 MCP Best Practices
- 7 MCP Server Best Practices for Scalable AI Integrations
 - Intentional Tool Design principles
 - Workflow Chaining patterns
 
AI Agent Integration Patterns
- LastMile AI MCP Agent Framework
 - Intent-based tool discovery patterns
 - Semantic tool composition examples
 
Current Framework Analysis
- Existing tool macro: 
mcp-macros/src/mcp_tool.rs - Tool discovery gaps: Missing semantic layer
 - AI agent feedback: "Need better tool discoverability"
 
Success Metrics
- Discovery Performance: AI agents find relevant tools in <10ms
 - Workflow Accuracy: 90%+ of suggested workflows are useful
 - Developer Productivity: 50% reduction in tool definition boilerplate
 - AI Integration: 95% of tool discoveries result in successful execution
 - Framework Adoption: Used by 80%+ of new MCP server implementations
 
This creates a competitive advantage by making PulseEngine MCP the most AI-agent-friendly framework available, addressing the key 2025 requirement for intelligent tool composition.
Priority: High - Key differentiator for AI agent integration
Effort: High - Novel system requiring careful design
Impact: High - Major competitive advantage and AI agent enablement