|
| 1 | +module Data.Set.NonEmpty |
| 2 | + ( NonEmptySet |
| 3 | + , singleton |
| 4 | + , cons |
| 5 | + , fromSet |
| 6 | + , fromFoldable |
| 7 | + , fromFoldable1 |
| 8 | + , toSet |
| 9 | + , toUnfoldable |
| 10 | + , toUnfoldable1 |
| 11 | + , map |
| 12 | + , member |
| 13 | + , insert |
| 14 | + , delete |
| 15 | + , size |
| 16 | + , min |
| 17 | + , max |
| 18 | + , unionSet |
| 19 | + , difference |
| 20 | + , subset |
| 21 | + , properSubset |
| 22 | + , intersection |
| 23 | + ) where |
| 24 | + |
| 25 | +import Prelude hiding (map) |
| 26 | + |
| 27 | +import Data.Eq (class Eq1) |
| 28 | +import Data.Foldable (class Foldable) |
| 29 | +import Data.List (List, (:)) |
| 30 | +import Data.List as List |
| 31 | +import Data.List.NonEmpty (NonEmptyList) |
| 32 | +import Data.Maybe (Maybe(..), fromJust) |
| 33 | +import Data.Ord (class Ord1) |
| 34 | +import Data.Semigroup.Foldable (class Foldable1, foldMap1) |
| 35 | +import Data.Set (Set) |
| 36 | +import Data.Set as Set |
| 37 | +import Data.Tuple (Tuple(..)) |
| 38 | +import Data.Unfoldable (class Unfoldable, class Unfoldable1, unfoldr1) |
| 39 | +import Partial.Unsafe (unsafePartial) |
| 40 | + |
| 41 | +-- | `NonEmptySet a` represents a non-empty set of values of type `a` |
| 42 | +newtype NonEmptySet a = NonEmptySet (Set a) |
| 43 | + |
| 44 | +derive newtype instance eqNonEmptySet :: Eq a => Eq (NonEmptySet a) |
| 45 | +derive newtype instance eq1NonEmptySet :: Eq1 NonEmptySet |
| 46 | +derive newtype instance ordNonEmptySet :: Ord a => Ord (NonEmptySet a) |
| 47 | +derive newtype instance ord1NonEmptySet :: Ord1 NonEmptySet |
| 48 | +derive newtype instance semigroupNonEmptySet :: Ord a => Semigroup (NonEmptySet a) |
| 49 | +derive newtype instance foldableNonEmptySet :: Foldable NonEmptySet |
| 50 | + |
| 51 | +instance foldable1NonEmptySet :: Foldable1 NonEmptySet where |
| 52 | + foldMap1 f = foldMap1 f <<< toUnfoldable1 :: forall a. NonEmptySet a -> NonEmptyList a |
| 53 | + fold1 = foldMap1 identity |
| 54 | + |
| 55 | +instance showNonEmptySet :: Show a => Show (NonEmptySet a) where |
| 56 | + show s = "(fromFoldable1 " <> show (toUnfoldable1 s :: NonEmptyList a) <> ")" |
| 57 | + |
| 58 | +-- | Create a set with one element. |
| 59 | +singleton :: forall a. a -> NonEmptySet a |
| 60 | +singleton a = NonEmptySet (Set.singleton a) |
| 61 | + |
| 62 | +-- | Creates a `NonEmptySet` from an item and a `Set`. |
| 63 | +cons :: forall a. Ord a => a -> Set a -> NonEmptySet a |
| 64 | +cons a = NonEmptySet <<< Set.insert a |
| 65 | + |
| 66 | +-- | Attempts to create a non-empty set from a possibly-empty set. |
| 67 | +fromSet :: forall a. Set a -> Maybe (NonEmptySet a) |
| 68 | +fromSet s = if Set.isEmpty s then Nothing else Just (NonEmptySet s) |
| 69 | + |
| 70 | +-- | Create a set from a foldable structure. |
| 71 | +fromFoldable :: forall f a. Foldable f => Ord a => f a -> Maybe (NonEmptySet a) |
| 72 | +fromFoldable = fromSet <<< Set.fromFoldable |
| 73 | + |
| 74 | +-- | Create a set from a non-empty foldable structure. |
| 75 | +fromFoldable1 :: forall f a. Foldable1 f => Ord a => f a -> NonEmptySet a |
| 76 | +fromFoldable1 = foldMap1 singleton |
| 77 | + |
| 78 | +-- | Forgets the non-empty property of a set, giving a normal possibly-empty |
| 79 | +-- | set. |
| 80 | +toSet :: forall a. NonEmptySet a -> Set a |
| 81 | +toSet (NonEmptySet s) = s |
| 82 | + |
| 83 | +-- | Convert a set to an unfoldable structure. |
| 84 | +toUnfoldable :: forall f a. Unfoldable f => NonEmptySet a -> f a |
| 85 | +toUnfoldable (NonEmptySet s) = Set.toUnfoldable s |
| 86 | + |
| 87 | +-- | Convert a set to a non-empty unfoldable structure. |
| 88 | +toUnfoldable1 :: forall f a. Unfoldable1 f => NonEmptySet a -> f a |
| 89 | +toUnfoldable1 (NonEmptySet s) = unfoldr1 go (Set.toUnfoldable s :: List a) |
| 90 | + where |
| 91 | + go = unsafePartial case _ of |
| 92 | + x : List.Nil -> Tuple x Nothing |
| 93 | + x : tail -> Tuple x (Just tail) |
| 94 | + |
| 95 | +-- | Maps over the values in a set. |
| 96 | +-- | |
| 97 | +-- | This operation is not structure-preserving for sets, so is not a valid |
| 98 | +-- | `Functor`. An example case: mapping `const x` over a set with `n > 0` |
| 99 | +-- | elements will result in a set with one element. |
| 100 | +map :: forall a b. Ord b => (a -> b) -> NonEmptySet a -> NonEmptySet b |
| 101 | +map f (NonEmptySet s) = NonEmptySet (Set.map f s) |
| 102 | + |
| 103 | +-- | Test if a value is a member of a set. |
| 104 | +member :: forall a. Ord a => a -> NonEmptySet a -> Boolean |
| 105 | +member a (NonEmptySet m) = Set.member a m |
| 106 | + |
| 107 | +-- | Insert a value into a set. |
| 108 | +insert :: forall a. Ord a => a -> NonEmptySet a -> NonEmptySet a |
| 109 | +insert a (NonEmptySet s) = NonEmptySet (Set.insert a s) |
| 110 | + |
| 111 | +-- | Delete a value from a non-empty set. If this would empty the set, the |
| 112 | +-- | result is `Nothing`. |
| 113 | +delete :: forall a. Ord a => a -> NonEmptySet a -> Maybe (NonEmptySet a) |
| 114 | +delete a (NonEmptySet s) = fromSet (Set.delete a s) |
| 115 | + |
| 116 | +-- | Find the size of a set. |
| 117 | +size :: forall a. NonEmptySet a -> Int |
| 118 | +size (NonEmptySet s) = Set.size s |
| 119 | + |
| 120 | +-- | The minimum value in the set. |
| 121 | +min :: forall a. NonEmptySet a -> a |
| 122 | +min (NonEmptySet s) = unsafePartial (fromJust (Set.findMin s)) |
| 123 | + |
| 124 | +-- | The maximum value in the set. |
| 125 | +max :: forall a. NonEmptySet a -> a |
| 126 | +max (NonEmptySet s) = unsafePartial (fromJust (Set.findMax s)) |
| 127 | + |
| 128 | +-- | Form the union of a set and the non-empty set. |
| 129 | +unionSet :: forall a. Ord a => Set.Set a -> NonEmptySet a -> NonEmptySet a |
| 130 | +unionSet s1 (NonEmptySet s2) = NonEmptySet (s1 <> s2) |
| 131 | + |
| 132 | +-- | Form the set difference. `Nothing` if the first is a subset of the second. |
| 133 | +difference :: forall a. Ord a => NonEmptySet a -> NonEmptySet a -> Maybe (NonEmptySet a) |
| 134 | +difference (NonEmptySet s1) (NonEmptySet s2) = fromSet (Set.difference s1 s2) |
| 135 | + |
| 136 | +-- | True if and only if every element in the first set is an element of the |
| 137 | +-- | second set. |
| 138 | +subset :: forall a. Ord a => NonEmptySet a -> NonEmptySet a -> Boolean |
| 139 | +subset (NonEmptySet s1) (NonEmptySet s2) = Set.subset s1 s2 |
| 140 | + |
| 141 | +-- | True if and only if the first set is a subset of the second set and the |
| 142 | +-- | sets are not equal. |
| 143 | +properSubset :: forall a. Ord a => NonEmptySet a -> NonEmptySet a -> Boolean |
| 144 | +properSubset (NonEmptySet s1) (NonEmptySet s2) = Set.properSubset s1 s2 |
| 145 | + |
| 146 | +-- | The set of elements which are in both the first and second set. `Nothing` |
| 147 | +-- | if the sets are disjoint. |
| 148 | +intersection :: forall a. Ord a => NonEmptySet a -> NonEmptySet a -> Maybe (NonEmptySet a) |
| 149 | +intersection (NonEmptySet s1) (NonEmptySet s2) = fromSet (Set.intersection s1 s2) |
0 commit comments