Skip to content

Commit 298caa8

Browse files
committed
add duramat sr library reference
1 parent 4df8ae2 commit 298caa8

File tree

1 file changed

+25
-18
lines changed

1 file changed

+25
-18
lines changed

docs/sphinx/source/user_guide/modeling_topics/spectrum.rst

Lines changed: 25 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,13 @@ Spectral mismatch models
1818

1919
pvlib-python contains several models to estimate the spectral mismatch factor
2020
using atmospheric variables such as air mass, or system and meteorological
21-
data such as spectral response and spectral irradiance. An example
22-
demonstrating the application of three pvlib-python spectral mismatch models
23-
is also available: :ref:`sphx_glr_gallery_spectrum_spectral_factor.py`. Here,
24-
a comparison of all models available in pvlib-python is presented. An extended
25-
review of a wider range of models available in the published literature may be
26-
found in Reference [1]_.
21+
data such as spectral response and spectral irradiance. Two separate examples
22+
demonstrating the application of four pvlib-python spectral mismatch models
23+
are also available: :ref:`sphx_glr_gallery_spectrum_spectral_factor.py` and
24+
Ref. [1]_, the latter of which also contains downloadable spectral response
25+
and spectral irradiance data. On this page, a comparison of all models
26+
available in pvlib-python is presented. An extended review of a wider range of
27+
models available in the published literature may be found in Reference [2]_.
2728

2829
The table below summarises the models currently available in pvlib, the inputs
2930
required, cell technologies for which model coefficients have been published,
@@ -37,24 +38,24 @@ of commerical module products.
3738
+=========================================================+============================+=================+===========+
3839
| :py:func:`~pvlib.spectrum.spectral_factor_caballero` | :term:`absolute_airmass`, | CdTe, | |
3940
| | :term:`precipitable_water`,| mono-Si, | |
40-
| | aerosol optical depth | poly-Si, | [2]_ |
41+
| | aerosol optical depth | poly-Si, | [3]_ |
4142
| | | aSi, | |
4243
| | | CIGS, | |
4344
| | | Perovskite | |
4445
+---------------------------------------------------------+----------------------------+-----------------+-----------+
4546
| :py:func:`~pvlib.spectrum.spectral_factor_firstsolar` | :term:`absolute_airmass`, | CdTe, | |
46-
| | :term:`precipitable_water` | poly-Si | [3]_ |
47+
| | :term:`precipitable_water` | poly-Si | [4]_ |
4748
+---------------------------------------------------------+----------------------------+-----------------+-----------+
48-
| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | :term:`absolute_airmass` | Multiple | [4]_ |
49+
| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | :term:`absolute_airmass` | Multiple | [5]_ |
4950
+---------------------------------------------------------+----------------------------+-----------------+-----------+
5051
| :py:func:`~pvlib.spectrum.spectral_factor_pvspec` | :term:`absolute_airmass`, | CdTe, | |
5152
| | clearsky index | poly-Si, | |
5253
| | | mono-Si, | |
53-
| | | CIGS, | [5]_ |
54+
| | | CIGS, | [6]_ |
5455
| | | aSi | |
5556
+---------------------------------------------------------+----------------------------+-----------------+-----------+
5657
| :py:func:`~pvlib.spectrum.spectral_factor_jrc` | :term:`relative_airmass`, | CdTe, | |
57-
| | clearsky index | poly-Si | [6]_ |
58+
| | clearsky index | poly-Si | [7]_ |
5859
+---------------------------------------------------------+----------------------------+-----------------+-----------+
5960
| :py:func:`~pvlib.spectrum.calc_spectral_mismatch_field` | spectral response, | Any single | |
6061
| | :term:`spectra` | junction | |
@@ -63,28 +64,34 @@ of commerical module products.
6364

6465
References
6566
----------
66-
.. [1] R. Daxini and Y. Wu, "Review of methods to account for the solar
67+
.. [1] A. Driesse, J. S. Stein, and M. Theristis, "Global horizontal spectral
68+
irradiance and module spectral response measurements: an open dataset
69+
for PV research Sandia National Laboratories, ALbuquerque, NM, USA, Rep.
70+
SAND2023-02045, 2023. Available:
71+
https://datahub.duramat.org/dataset/module-sr-library
72+
73+
.. [2] R. Daxini and Y. Wu, "Review of methods to account for the solar
6774
spectral influence on photovoltaic device performance," Energy,
6875
vol. 286, p. 129461, Jan. 2024. :doi:`10.1016/j.energy.2023.129461`
69-
.. [2] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
76+
.. [3] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
7077
G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical
7178
Depth and Precipitable Water for PV Performance Modeling," IEEE Journal
7279
of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018.
7380
:doi:`10.1109/JPHOTOV.2017.2787019`
74-
.. [3] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
81+
.. [4] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
7582
Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd
7683
Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016,
7784
pp. 3696-3699. :doi:`10.1109/PVSC.2016.7749836`
78-
.. [4] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
85+
.. [5] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
7986
Performance Model, Sandia National Laboratories, Albuquerque, NM, USA,
8087
Tech. Rep. SAND2004-3535, Aug. 2004. :doi:`10.2172/919131`
81-
.. [5] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
88+
.. [6] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
8289
PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020
8390
IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB,
8491
Canada, 2020, pp. 1–6. :doi:`10.1109/PVSC45281.2020.9300932`
85-
.. [6] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the
92+
.. [7] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the
8693
Influence of Spectrum Variations on PV Performance,” pp. 3385–3389, Nov.
8794
2009, :doi:10.4229/24THEUPVSEC2009-4AV.3.27
88-
.. [7] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
95+
.. [8] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
8996
spectral mismatch correction for measurements of photovoltaic devices,
9097
International Electrotechnical Commission, Geneva, Switzerland, 2019.

0 commit comments

Comments
 (0)