@@ -18,12 +18,13 @@ Spectral mismatch models
1818
1919pvlib-python contains several models to estimate the spectral mismatch factor
2020using atmospheric variables such as air mass, or system and meteorological
21- data such as spectral response and spectral irradiance. An example
22- demonstrating the application of three pvlib-python spectral mismatch models
23- is also available: :ref: `sphx_glr_gallery_spectrum_spectral_factor.py `. Here,
24- a comparison of all models available in pvlib-python is presented. An extended
25- review of a wider range of models available in the published literature may be
26- found in Reference [1 ]_.
21+ data such as spectral response and spectral irradiance. Two separate examples
22+ demonstrating the application of four pvlib-python spectral mismatch models
23+ are also available: :ref: `sphx_glr_gallery_spectrum_spectral_factor.py ` and
24+ Ref. [1 ]_, the latter of which also contains downloadable spectral response
25+ and spectral irradiance data. On this page, a comparison of all models
26+ available in pvlib-python is presented. An extended review of a wider range of
27+ models available in the published literature may be found in Reference [2 ]_.
2728
2829The table below summarises the models currently available in pvlib, the inputs
2930required, cell technologies for which model coefficients have been published,
@@ -37,24 +38,24 @@ of commerical module products.
3738+=========================================================+============================+=================+===========+
3839| :py:func: `~pvlib.spectrum.spectral_factor_caballero ` | :term: `absolute_airmass `, | CdTe, | |
3940| | :term: `precipitable_water `,| mono-Si, | |
40- | | aerosol optical depth | poly-Si, | [2 ]_ |
41+ | | aerosol optical depth | poly-Si, | [3 ]_ |
4142| | | aSi, | |
4243| | | CIGS, | |
4344| | | Perovskite | |
4445+---------------------------------------------------------+----------------------------+-----------------+-----------+
4546| :py:func: `~pvlib.spectrum.spectral_factor_firstsolar ` | :term: `absolute_airmass `, | CdTe, | |
46- | | :term: `precipitable_water ` | poly-Si | [3 ]_ |
47+ | | :term: `precipitable_water ` | poly-Si | [4 ]_ |
4748+---------------------------------------------------------+----------------------------+-----------------+-----------+
48- | :py:func: `~pvlib.spectrum.spectral_factor_sapm ` | :term: `absolute_airmass ` | Multiple | [4 ]_ |
49+ | :py:func: `~pvlib.spectrum.spectral_factor_sapm ` | :term: `absolute_airmass ` | Multiple | [5 ]_ |
4950+---------------------------------------------------------+----------------------------+-----------------+-----------+
5051| :py:func: `~pvlib.spectrum.spectral_factor_pvspec ` | :term: `absolute_airmass `, | CdTe, | |
5152| | clearsky index | poly-Si, | |
5253| | | mono-Si, | |
53- | | | CIGS, | [5 ]_ |
54+ | | | CIGS, | [6 ]_ |
5455| | | aSi | |
5556+---------------------------------------------------------+----------------------------+-----------------+-----------+
5657| :py:func: `~pvlib.spectrum.spectral_factor_jrc ` | :term: `relative_airmass `, | CdTe, | |
57- | | clearsky index | poly-Si | [6 ]_ |
58+ | | clearsky index | poly-Si | [7 ]_ |
5859+---------------------------------------------------------+----------------------------+-----------------+-----------+
5960| :py:func: `~pvlib.spectrum.calc_spectral_mismatch_field ` | spectral response, | Any single | |
6061| | :term: `spectra ` | junction | |
@@ -63,28 +64,34 @@ of commerical module products.
6364
6465References
6566----------
66- .. [1 ] R. Daxini and Y. Wu, "Review of methods to account for the solar
67+ .. [1 ] A. Driesse, J. S. Stein, and M. Theristis, "Global horizontal spectral
68+ irradiance and module spectral response measurements: an open dataset
69+ for PV research Sandia National Laboratories, ALbuquerque, NM, USA, Rep.
70+ SAND2023-02045, 2023. Available:
71+ https://datahub.duramat.org/dataset/module-sr-library
72+
73+ .. [2 ] R. Daxini and Y. Wu, "Review of methods to account for the solar
6774 spectral influence on photovoltaic device performance," Energy,
6875 vol. 286, p. 129461, Jan. 2024. :doi: `10.1016/j.energy.2023.129461 `
69- .. [2 ] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
76+ .. [3 ] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
7077 G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical
7178 Depth and Precipitable Water for PV Performance Modeling," IEEE Journal
7279 of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018.
7380 :doi: `10.1109/JPHOTOV.2017.2787019 `
74- .. [3 ] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
81+ .. [4 ] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
7582 Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd
7683 Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016,
7784 pp. 3696-3699. :doi: `10.1109/PVSC.2016.7749836 `
78- .. [4 ] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
85+ .. [5 ] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
7986 Performance Model, Sandia National Laboratories, Albuquerque, NM, USA,
8087 Tech. Rep. SAND2004-3535, Aug. 2004. :doi: `10.2172/919131 `
81- .. [5 ] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
88+ .. [6 ] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
8289 PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020
8390 IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB,
8491 Canada, 2020, pp. 1–6. :doi: `10.1109/PVSC45281.2020.9300932 `
85- .. [6 ] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the
92+ .. [7 ] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the
8693 Influence of Spectrum Variations on PV Performance,” pp. 3385–3389, Nov.
8794 2009, :doi: 10.4229/24THEUPVSEC2009-4AV.3.27
88- .. [7 ] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
95+ .. [8 ] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
8996 spectral mismatch correction for measurements of photovoltaic devices,
9097 International Electrotechnical Commission, Geneva, Switzerland, 2019.
0 commit comments