| 
 | 1 | +"""  | 
 | 2 | +Use different Perez coefficients with the ModelChain  | 
 | 3 | +====================================================  | 
 | 4 | +
  | 
 | 5 | +This example demonstrates how to customize the ModelChain  | 
 | 6 | +to use site-specific Perez transposition coefficients.  | 
 | 7 | +"""  | 
 | 8 | + | 
 | 9 | +# %%  | 
 | 10 | +# The :py:class:`pvlib.modelchain.ModelChain` object provides a useful method  | 
 | 11 | +# for easily constructing a PV system model with a simple, unified interface.  | 
 | 12 | +# However, a user may want to customize the steps  | 
 | 13 | +# in the system model in various ways.  | 
 | 14 | +# One such example is during the irradiance transposition step.  | 
 | 15 | +# The Perez model perform very well on field data, but  | 
 | 16 | +# it requires a set of fitted coefficients from various sites.  | 
 | 17 | +# It has been noted that these coefficients can be specific to  | 
 | 18 | +# various climates, so users may see improved model accuracy  | 
 | 19 | +# when using a site-specific set of coefficients.  | 
 | 20 | +# However, the base  :py:class:`~pvlib.modelchain.ModelChain`  | 
 | 21 | +# only supports the default coefficients.  | 
 | 22 | +# This example shows how the  :py:class:`~pvlib.modelchain.ModelChain` can  | 
 | 23 | +# be adjusted to use a different set of Perez coefficients.  | 
 | 24 | + | 
 | 25 | +import pandas as pd  | 
 | 26 | +from pvlib.pvsystem import PVSystem  | 
 | 27 | +from pvlib.modelchain import ModelChain  | 
 | 28 | +from pvlib.temperature import TEMPERATURE_MODEL_PARAMETERS  | 
 | 29 | +from pvlib import iotools, location, irradiance  | 
 | 30 | +import pvlib  | 
 | 31 | +import os  | 
 | 32 | +import matplotlib.pyplot as plt  | 
 | 33 | + | 
 | 34 | +# load in TMY weather data from North Carolina included with pvlib  | 
 | 35 | +PVLIB_DIR = pvlib.__path__[0]  | 
 | 36 | +DATA_FILE = os.path.join(PVLIB_DIR, 'data', '723170TYA.CSV')  | 
 | 37 | + | 
 | 38 | +tmy, metadata = iotools.read_tmy3(DATA_FILE, coerce_year=1990,  | 
 | 39 | +                                  map_variables=True)  | 
 | 40 | + | 
 | 41 | +weather_data = tmy[['ghi', 'dhi', 'dni', 'temp_air', 'wind_speed']]  | 
 | 42 | + | 
 | 43 | +loc = location.Location.from_tmy(metadata)  | 
 | 44 | + | 
 | 45 | +#%%  | 
 | 46 | +# Now, let's set up a standard PV model using the ``ModelChain``  | 
 | 47 | + | 
 | 48 | +surface_tilt = metadata['latitude']  | 
 | 49 | +surface_azimuth = 180  | 
 | 50 | + | 
 | 51 | +# define an example module and inverter  | 
 | 52 | +sandia_modules = pvlib.pvsystem.retrieve_sam('SandiaMod')  | 
 | 53 | +cec_inverters = pvlib.pvsystem.retrieve_sam('cecinverter')  | 
 | 54 | +sandia_module = sandia_modules['Canadian_Solar_CS5P_220M___2009_']  | 
 | 55 | +cec_inverter = cec_inverters['ABB__MICRO_0_25_I_OUTD_US_208__208V_']  | 
 | 56 | + | 
 | 57 | +temp_params = TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass']  | 
 | 58 | + | 
 | 59 | +# define the system and ModelChain  | 
 | 60 | +system = PVSystem(arrays=None,  | 
 | 61 | +                  surface_tilt=surface_tilt,  | 
 | 62 | +                  surface_azimuth=surface_azimuth,  | 
 | 63 | +                  module_parameters=sandia_module,  | 
 | 64 | +                  inverter_parameters=cec_inverter,  | 
 | 65 | +                  temperature_model_parameters=temp_params)  | 
 | 66 | + | 
 | 67 | +mc = ModelChain(system, location=loc)  | 
 | 68 | + | 
 | 69 | +# %%  | 
 | 70 | +# Now, let's calculate POA irradiance values outside of the ``ModelChain``.  | 
 | 71 | +# We do this for both the default Perez coefficients and the desired  | 
 | 72 | +# alternative Perez coefficients.  This enables comparison at the end.  | 
 | 73 | + | 
 | 74 | +# Cape Canaveral seems like the most likely match for climate  | 
 | 75 | +model_perez = 'capecanaveral1988'  | 
 | 76 | + | 
 | 77 | +solar_position = loc.get_solarposition(times=weather_data.index)  | 
 | 78 | +dni_extra = irradiance.get_extra_radiation(weather_data.index)  | 
 | 79 | + | 
 | 80 | +POA_irradiance = irradiance.get_total_irradiance(  | 
 | 81 | +    surface_tilt=surface_tilt,  | 
 | 82 | +    surface_azimuth=surface_azimuth,  | 
 | 83 | +    dni=weather_data['dni'],  | 
 | 84 | +    ghi=weather_data['ghi'],  | 
 | 85 | +    dhi=weather_data['dhi'],  | 
 | 86 | +    solar_zenith=solar_position['apparent_zenith'],  | 
 | 87 | +    solar_azimuth=solar_position['azimuth'],  | 
 | 88 | +    model='perez',  | 
 | 89 | +    dni_extra=dni_extra)  | 
 | 90 | + | 
 | 91 | +POA_irradiance_new_perez = irradiance.get_total_irradiance(  | 
 | 92 | +    surface_tilt=surface_tilt,  | 
 | 93 | +    surface_azimuth=surface_azimuth,  | 
 | 94 | +    dni=weather_data['dni'],  | 
 | 95 | +    ghi=weather_data['ghi'],  | 
 | 96 | +    dhi=weather_data['dhi'],  | 
 | 97 | +    solar_zenith=solar_position['apparent_zenith'],  | 
 | 98 | +    solar_azimuth=solar_position['azimuth'],  | 
 | 99 | +    model='perez',  | 
 | 100 | +    model_perez=model_perez,  | 
 | 101 | +    dni_extra=dni_extra)  | 
 | 102 | + | 
 | 103 | +# %%  | 
 | 104 | +# Now, run the ``ModelChain`` with both sets of irradiance data and compare  | 
 | 105 | +# (note that to use POA irradiance as input to the ModelChain the method  | 
 | 106 | +# `.run_model_from_poa` is used):  | 
 | 107 | + | 
 | 108 | +mc.run_model_from_poa(POA_irradiance)  | 
 | 109 | +ac_power_default = mc.results.ac  | 
 | 110 | + | 
 | 111 | +mc.run_model_from_poa(POA_irradiance_new_perez)  | 
 | 112 | +ac_power_new_perez = mc.results.ac  | 
 | 113 | + | 
 | 114 | +start, stop = '1990-05-05 06:00:00', '1990-05-05 19:00:00'  | 
 | 115 | +plt.plot(ac_power_default.loc[start:stop],  | 
 | 116 | +         label="Default Composite Perez Model")  | 
 | 117 | +plt.plot(ac_power_new_perez.loc[start:stop],  | 
 | 118 | +         label="Cape Canaveral Perez Model")  | 
 | 119 | +plt.xticks(rotation=90)  | 
 | 120 | +plt.ylabel("AC Power ($W$)")  | 
 | 121 | +plt.legend()  | 
 | 122 | +plt.tight_layout()  | 
 | 123 | +plt.show()  | 
 | 124 | +# %%  | 
 | 125 | +# Note that there is a small, but noticeable difference from the default  | 
 | 126 | +# coefficients that may add up over longer periods of time.  | 
0 commit comments