|
12 | 12 | 'direct_normal_irradiance': 'dni',
|
13 | 13 | 'direct_horizontal_irradiance': 'bhi',
|
14 | 14 | 'global_clear_sky_irradiance': 'ghi_clear',
|
| 15 | + 'diffuse_clear_sky_irradiance': 'dhi_clear', |
| 16 | + 'direct_normal_clear_sky_irradiance': 'dni_clear', |
| 17 | + 'direct_horizontal_clear_sky_irradiance': 'bhi_clear', |
15 | 18 | 'diffuse_tilted_irradiance': 'poa_diffuse',
|
16 | 19 | 'direct_tilted_irradiance': 'poa_direct',
|
17 | 20 | 'global_tilted_irradiance': 'poa',
|
@@ -96,7 +99,7 @@ def get_meteonorm(latitude, longitude, start, end, api_key, endpoint,
|
96 | 99 | -------
|
97 | 100 | data : pd.DataFrame
|
98 | 101 | Time series data. The index corresponds to the start (left) of the
|
99 |
| - interval unless ``interval_index`` is set to False. |
| 102 | + interval unless ``interval_index`` is set to True. |
100 | 103 | meta : dict
|
101 | 104 | Metadata.
|
102 | 105 |
|
@@ -144,12 +147,11 @@ def get_meteonorm(latitude, longitude, start, end, api_key, endpoint,
|
144 | 147 | if isinstance(parameters, str):
|
145 | 148 | parameters = [parameters]
|
146 | 149 |
|
| 150 | + # allow the use of pvlib parameter names |
| 151 | + parameter_dict = {v: k for k, v in VARIABLE_MAP.items()} |
| 152 | + parameters = [parameter_dict.get(p, p) for p in parameters] |
147 | 153 | # convert list to string with values separated by commas
|
148 |
| - if not isinstance(parameters, (str, type(None))): |
149 |
| - # allow the use of pvlib parameter names |
150 |
| - parameter_dict = {v: k for k, v in VARIABLE_MAP.items()} |
151 |
| - parameters = [parameter_dict.get(p, p) for p in parameters] |
152 |
| - params['parameters'] = ','.join(parameters) |
| 154 | + params['parameters'] = ','.join(parameters) |
153 | 155 |
|
154 | 156 | if not isinstance(horizon, str):
|
155 | 157 | params['horizon'] = ','.join(map(str, horizon))
|
@@ -216,7 +218,7 @@ def get_meteonorm_tmy(latitude, longitude, api_key,
|
216 | 218 | 'slope_west_east'].
|
217 | 219 | albedo : float, optional
|
218 | 220 | Constant ground albedo. If no value is specified a baseline albedo of
|
219 |
| - 0.2 is used and albedo cahnges due to snow fall is modeled. If a value |
| 221 | + 0.2 is used and albedo changes due to snow fall are modeled. If a value |
220 | 222 | is specified, then snow fall is not modeled.
|
221 | 223 | turbidity : list or 'auto', optional
|
222 | 224 | List of 12 monthly mean atmospheric Linke turbidity values. The default
|
@@ -252,7 +254,7 @@ def get_meteonorm_tmy(latitude, longitude, api_key,
|
252 | 254 | -------
|
253 | 255 | data : pd.DataFrame
|
254 | 256 | Time series data. The index corresponds to the start (left) of the
|
255 |
| - interval unless ``interval_index`` is set to False. |
| 257 | + interval unless ``interval_index`` is set to True. |
256 | 258 | meta : dict
|
257 | 259 | Metadata.
|
258 | 260 |
|
@@ -291,12 +293,11 @@ def get_meteonorm_tmy(latitude, longitude, api_key,
|
291 | 293 | if isinstance(parameters, str):
|
292 | 294 | parameters = [parameters]
|
293 | 295 |
|
| 296 | + # allow the use of pvlib parameter names |
| 297 | + parameter_dict = {v: k for k, v in VARIABLE_MAP.items()} |
| 298 | + parameters = [parameter_dict.get(p, p) for p in parameters] |
294 | 299 | # convert list to string with values separated by commas
|
295 |
| - if not isinstance(parameters, (str, type(None))): |
296 |
| - # allow the use of pvlib parameter names |
297 |
| - parameter_dict = {v: k for k, v in VARIABLE_MAP.items()} |
298 |
| - parameters = [parameter_dict.get(p, p) for p in parameters] |
299 |
| - params['parameters'] = ','.join(parameters) |
| 300 | + params['parameters'] = ','.join(parameters) |
300 | 301 |
|
301 | 302 | if not isinstance(horizon, str):
|
302 | 303 | params['horizon'] = ','.join(map(str, horizon))
|
|
0 commit comments