Skip to content

Commit 9c588a9

Browse files
committed
references, table format, updated text
1 parent 7e79344 commit 9c588a9

File tree

1 file changed

+44
-10
lines changed

1 file changed

+44
-10
lines changed

docs/sphinx/source/user_guide/spectrum.rst

Lines changed: 44 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,32 +15,66 @@ demonstrating the application of three pvlib-python spectral mismatch models
1515
is also available: :ref:`sphx_glr_gallery_spectrum_spectral_factor.py`. Here,
1616
a comparison of all models available in pvlib-python is presented. An extended
1717
review of a wider range of models available in the published literature may be
18-
found in Reference [X].
18+
found in Reference [1]_.
1919

2020
The table below summarises the models currently available in pvlib, the inputs
2121
required, cell technologies for which model coefficients have been published,
22-
source of data used for model development and validation, and references.
22+
and references. Note that while most models are validated for specific cell
23+
technologies, the Sandia Array Performance Model (SAPM) and spectral mismatch
24+
calculation are not specific to cell type; the former is validated for a range
25+
of commerical module products.
2326

2427
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
2528
| Model | Inputs | Cell technology | Reference |
2629
+=========================================================+==============================================================+=================+============+
27-
| :py:func:`~pvlib.spectrum.spectral_factor_caballero` | absolute airmass, precipitable water, aerosol optical depth | CdTe, mono-Si, | |
28-
| | | poly-Si, CIGS, | [X] |
30+
| :py:func:`~pvlib.spectrum.spectral_factor_caballero` | absolute airmass, | CdTe, | |
31+
| | precipitable water, | mono-Si, | |
32+
| | aerosol optical depth | poly-Si, CIGS, | [2]_ |
2933
| | | aSi, perovskite | |
3034
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
31-
| :py:func:`~pvlib.spectrum.spectral_factor_firstsolar` | absolute airmass, precipitable water | mSi, CdTe | [X] |
35+
| :py:func:`~pvlib.spectrum.spectral_factor_firstsolar` | absolute airmass, | CdTe, | |
36+
| | precipitable water | poly-Si | [3]_ |
3237
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
33-
| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | absolute airmass | Multiple | [X] |
38+
| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | absolute airmass | Multiple | [4]_ |
3439
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
35-
| :py:func:`~pvlib.spectrum.spectral_factor_pvspec` | absolute airmass, clearsky index | CdTe, mono-Si, | |
36-
| | | poly-Si, CIGS, | [X] |
40+
| :py:func:`~pvlib.spectrum.spectral_factor_pvspec` | absolute airmass, | CdTe, | |
41+
| | clearsky index | poly-Si, | |
42+
| | | mono-Si, | |
43+
| | | CIGS, | [5]_ |
3744
| | | aSi | |
3845
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
39-
| :py:func:`~pvlib.spectrum.spectral_factor_jrc` | absolute airmass, clearsky index | CdTe, poly-Si | [X] |
46+
| :py:func:`~pvlib.spectrum.spectral_factor_jrc` | absolute airmass, clearsky index | CdTe, | |
47+
| | | poly-Si | [6]_ |
4048
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
41-
| :py:func:`~pvlib.spectrum.calc_spectral_mismatch_field` | spectral response, spectral irradiance | - | [X] |
49+
| :py:func:`~pvlib.spectrum.calc_spectral_mismatch_field` | spectral response, spectral irradiance | - | [7]_ |
4250
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
4351

4452

4553
References
4654
----------
55+
.. [1] R. Daxini and Y. Wu, "Review of methods to account for the solar
56+
spectral influence on photovoltaic device performance," Energy,
57+
vol. 286, p. 129461, Jan. 2024. :doi:`10.1016/j.energy.2023.129461`
58+
.. [2] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
59+
G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical
60+
Depth and Precipitable Water for PV Performance Modeling," IEEE Journal
61+
of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018.
62+
:doi:`10.1109/JPHOTOV.2017.2787019`
63+
.. [3] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
64+
Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd
65+
Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016,
66+
pp. 3696-3699. :doi:`10.1109/PVSC.2016.7749836`
67+
.. [4] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
68+
Performance Model, Sandia National Laboratories, Albuquerque, NM, USA,
69+
Tech. Rep. SAND2004-3535, Aug. 2004. :doi:`10.2172/919131`
70+
.. [5] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
71+
PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020
72+
IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB,
73+
Canada, 2020, pp. 1–6. :doi:`10.1109/PVSC45281.2020.9300932`
74+
.. [6] T. Huld, T. C. Sample, and E. D. Dunlop, "A Simple Model for Estimating
75+
the Influence of Spectral Variations on the Performance of PV Modules,
76+
"AerosolSolar Energy Materials and Solar Cells, vol. 92, no. 12,
77+
pp. 1645–1656, Dec. 2008. :doi:`10.1016/j.solmat.2008.07.016`
78+
.. [7] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
79+
spectral mismatch correction for measurements of photovoltaic devices,
80+
International Electrotechnical Commission, Geneva, Switzerland, 2019.

0 commit comments

Comments
 (0)