@@ -15,32 +15,66 @@ demonstrating the application of three pvlib-python spectral mismatch models
1515is also available: :ref: `sphx_glr_gallery_spectrum_spectral_factor.py `. Here,
1616a comparison of all models available in pvlib-python is presented. An extended
1717review of a wider range of models available in the published literature may be
18- found in Reference [X] .
18+ found in Reference [1 ]_ .
1919
2020The table below summarises the models currently available in pvlib, the inputs
2121required, cell technologies for which model coefficients have been published,
22- source of data used for model development and validation, and references.
22+ and references. Note that while most models are validated for specific cell
23+ technologies, the Sandia Array Performance Model (SAPM) and spectral mismatch
24+ calculation are not specific to cell type; the former is validated for a range
25+ of commerical module products.
2326
2427+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
2528| Model | Inputs | Cell technology | Reference |
2629+=========================================================+==============================================================+=================+============+
27- | :py:func: `~pvlib.spectrum.spectral_factor_caballero ` | absolute airmass, precipitable water, aerosol optical depth | CdTe, mono-Si, | |
28- | | | poly-Si, CIGS, | [X] |
30+ | :py:func: `~pvlib.spectrum.spectral_factor_caballero ` | absolute airmass, | CdTe, | |
31+ | | precipitable water, | mono-Si, | |
32+ | | aerosol optical depth | poly-Si, CIGS, | [2 ]_ |
2933| | | aSi, perovskite | |
3034+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
31- | :py:func: `~pvlib.spectrum.spectral_factor_firstsolar ` | absolute airmass, precipitable water | mSi, CdTe | [X] |
35+ | :py:func: `~pvlib.spectrum.spectral_factor_firstsolar ` | absolute airmass, | CdTe, | |
36+ | | precipitable water | poly-Si | [3 ]_ |
3237+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
33- | :py:func: `~pvlib.spectrum.spectral_factor_sapm ` | absolute airmass | Multiple | [X] |
38+ | :py:func: `~pvlib.spectrum.spectral_factor_sapm ` | absolute airmass | Multiple | [4 ]_ |
3439+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
35- | :py:func: `~pvlib.spectrum.spectral_factor_pvspec ` | absolute airmass, clearsky index | CdTe, mono-Si, | |
36- | | | poly-Si, CIGS, | [X] |
40+ | :py:func: `~pvlib.spectrum.spectral_factor_pvspec ` | absolute airmass, | CdTe, | |
41+ | | clearsky index | poly-Si, | |
42+ | | | mono-Si, | |
43+ | | | CIGS, | [5 ]_ |
3744| | | aSi | |
3845+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
39- | :py:func: `~pvlib.spectrum.spectral_factor_jrc ` | absolute airmass, clearsky index | CdTe, poly-Si | [X] |
46+ | :py:func: `~pvlib.spectrum.spectral_factor_jrc ` | absolute airmass, clearsky index | CdTe, | |
47+ | | | poly-Si | [6 ]_ |
4048+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
41- | :py:func: `~pvlib.spectrum.calc_spectral_mismatch_field ` | spectral response, spectral irradiance | - | [X] |
49+ | :py:func: `~pvlib.spectrum.calc_spectral_mismatch_field ` | spectral response, spectral irradiance | - | [7 ]_ |
4250+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
4351
4452
4553References
4654----------
55+ .. [1 ] R. Daxini and Y. Wu, "Review of methods to account for the solar
56+ spectral influence on photovoltaic device performance," Energy,
57+ vol. 286, p. 129461, Jan. 2024. :doi: `10.1016/j.energy.2023.129461 `
58+ .. [2 ] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and
59+ G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical
60+ Depth and Precipitable Water for PV Performance Modeling," IEEE Journal
61+ of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018.
62+ :doi: `10.1109/JPHOTOV.2017.2787019 `
63+ .. [3 ] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module
64+ Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd
65+ Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016,
66+ pp. 3696-3699. :doi: `10.1109/PVSC.2016.7749836 `
67+ .. [4 ] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array
68+ Performance Model, Sandia National Laboratories, Albuquerque, NM, USA,
69+ Tech. Rep. SAND2004-3535, Aug. 2004. :doi: `10.2172/919131 `
70+ .. [5 ] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the
71+ PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020
72+ IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB,
73+ Canada, 2020, pp. 1–6. :doi: `10.1109/PVSC45281.2020.9300932 `
74+ .. [6 ] T. Huld, T. C. Sample, and E. D. Dunlop, "A Simple Model for Estimating
75+ the Influence of Spectral Variations on the Performance of PV Modules,
76+ "AerosolSolar Energy Materials and Solar Cells, vol. 92, no. 12,
77+ pp. 1645–1656, Dec. 2008. :doi: `10.1016/j.solmat.2008.07.016 `
78+ .. [7 ] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the
79+ spectral mismatch correction for measurements of photovoltaic devices,
80+ International Electrotechnical Commission, Geneva, Switzerland, 2019.
0 commit comments