@@ -74,6 +74,8 @@ to accomplish our system modeling goal:
74
74
dni_extra = pvlib.irradiance.extraradiation(times)
75
75
dni_extra = pd.Series(dni_extra, index = times)
76
76
airmass = pvlib.atmosphere.relativeairmass(solpos[' apparent_zenith' ])
77
+ pressure = pvlib.atmosphere.alt2pres(altitude)
78
+ am_abs = pvlib.atmosphere.absoluteairmass(airmass, pressure)
77
79
aoi = pvlib.irradiance.aoi(system[' surface_tilt' ], system[' surface_azimuth' ],
78
80
solpos[' apparent_zenith' ], solpos[' azimuth' ])
79
81
total_irrad = pvlib.irradiance.total_irrad(system[' surface_tilt' ],
@@ -86,7 +88,7 @@ to accomplish our system modeling goal:
86
88
temps = pvlib.pvsystem.sapm_celltemp(total_irrad[' poa_global' ], 0 , 20 )
87
89
dc = pvlib.pvsystem.sapm(module, total_irrad[' poa_direct' ],
88
90
total_irrad[' poa_diffuse' ], temps[' temp_cell' ],
89
- airmass , aoi)
91
+ am_abs , aoi)
90
92
ac = pvlib.pvsystem.snlinverter(inverter, dc[' v_mp' ], dc[' p_mp' ])
91
93
annual_energy = ac.sum()
92
94
energies[name] = annual_energy
@@ -105,11 +107,11 @@ Object oriented (Location, PVSystem, ModelChain)
105
107
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
106
108
107
109
The first object oriented paradigm uses a model where
108
- a :class: `PVSystem < pvlib.pvsystem.PVSystem> ` object represents an
110
+ a :py: class: `~ pvlib.pvsystem.PVSystem ` object represents an
109
111
assembled collection of modules, inverters, etc.,
110
- a :class: `Location < pvlib.location.Location> ` object represents a
112
+ a :py: class: `~ pvlib.location.Location ` object represents a
111
113
particular place on the planet,
112
- and a :class: `ModelChain < pvlib.modelchain.ModelChain> ` object describes
114
+ and a :py: class: `~ pvlib.modelchain.ModelChain ` object describes
113
115
the modeling chain used to calculate PV output at that Location.
114
116
This can be a useful paradigm if you prefer to think about
115
117
the PV system and its location as separate concepts or if
@@ -156,20 +158,20 @@ Object oriented (LocalizedPVSystem)
156
158
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
157
159
158
160
The second object oriented paradigm uses a model where a
159
- :class: `LocalizedPVSystem < pvlib.pvsystem.LocalizedPVSystem> ` represents a
161
+ :py: class: `~ pvlib.pvsystem.LocalizedPVSystem ` represents a
160
162
PV system at a particular place on the planet.
161
163
This can be a useful paradigm if you're thinking about
162
164
a power plant that already exists.
163
165
164
166
The following code demonstrates how to use a
165
- :class: `LocalizedPVSystem < pvlib.pvsystem.LocalizedPVSystem> `
167
+ :py: class: `~ pvlib.pvsystem.LocalizedPVSystem `
166
168
object to accomplish our modeling goal:
167
169
168
170
.. ipython :: python
169
171
170
172
from pvlib.pvsystem import PVSystem, LocalizedPVSystem
171
173
172
- other_system_params = {} # sometime helpful to break apart
174
+ other_system_params = {} # sometimes helpful to break apart
173
175
base_system = PVSystem(module_parameters = module,
174
176
inverter_parameters = inverter,
175
177
** other_system_params)
0 commit comments