-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Open
Description
The output of the function above does not change when the the following parameters change:
- height
- pitch
- model
- dni_extra
- iam # this one may be intended?
rear_irradiance_group = get_irradiance_poa(
surface_tilt=group_df["rear_surface_tilt"],
surface_azimuth=group_df["rear_surface_azimuth"],
solar_zenith=group_df["apparent_zenith"],
solar_azimuth=group_df["azimuth"],
gcr=gcr,
height=99,
pitch=99,
ghi=group_df["ghi"],
dhi=group_df["dhi"],
dni=group_df["dni"],
albedo=ALBEDO,
model="hay_davies",
dni_extra=group_df["dni_extra"],
iam=1.0,
npoints=6,
vectorize=True, # Vectorize is fine for time-series inputs
)
To Reproduce
Steps to reproduce the behavior:
Some sample data
string_id met_name time surface_tilt surface_azimuth ghi dhi dni apparent_zenith azimuth dni_extra pitch racking_equipment_id racking_controls_gcr module_equipment_id bifaciality_factor pile_height rear_surface_tilt rear_surface_azimuth
122780 429 05 2025-08-18 07:15:00-06:00 11.563849 90.000000 64.606815 23.909445 482.167134 85.023666 77.323903 1327.346081 5.05 8 0.4 12 0.791 1.6 168.436151 270.000000
122781 429 05 2025-08-18 07:20:00-06:00 13.798609 90.000000 79.229623 26.120372 526.216676 84.090495 78.089598 1327.346081 5.05 8 0.4 12 0.791 1.6 166.201391 270.000000
122782 429 05 2025-08-18 07:25:00-06:00 16.098271 90.000002 94.731742 28.557150 563.347112 83.150932 78.853213 1327.346081 5.05 8 0.4 12 0.791 1.6 163.901729 270.000002
122783 429 05 2025-08-18 07:30:00-06:00 18.475625 90.000000 117.185185 39.581374 579.055416 82.206119 79.615158 1327.346081 5.05 8 0.4 12 0.791 1.6 161.524375 270.000000
122784 429 05 2025-08-18 07:35:00-06:00 20.947126 90.000002 136.620012 46.861257 596.118306 81.256884 80.375843 1327.346081 5.05 8 0.4 12 0.791 1.6 159.052874 270.000002
122785 429 05 2025-08-18 07:40:00-06:00 23.533385 90.000000 158.033562 55.620140 612.808995 80.304018 81.135684 1327.346081 5.05 8 0.4 12 0.791 1.6 156.466615 270.000000
122786 429 05 2025-08-18 07:45:00-06:00 26.261737 90.000000 172.369276 50.339806 664.439619 79.348009 81.895102 1327.346081 5.05 8 0.4 12 0.791 1.6 153.738263 270.000000
122787 429 05 2025-08-18 07:50:00-06:00 29.168602 90.000000 190.162325 53.228972 684.073245 78.389286 82.654525 1327.346081 5.05 8 0.4 12 0.791 1.6 150.831398 270.000000
122788 429 05 2025-08-18 07:55:00-06:00 32.304751 90.000001 215.508648 69.363785 674.533014 77.428165 83.414384 1327.346081 5.05 8 0.4 12 0.791 1.6 147.695249 270.000001
122789 429 05 2025-08-18 08:00:00-06:00 35.744402 90.000001 226.806553 59.080368 719.509943 76.464956 84.175121 1327.346081 5.05 8 0.4 12 0.791 1.6 144.255598 270.00000
Expected behavior
A clear and concise description of what you expected to happen.
I would expect that a higher height would give a larger irradiance value
Screenshots
If applicable, add screenshots to help explain your problem.
Versions:
pvlib.__version__
: 0.13.0pandas.__version__
: 2.2.3- python: 3.12
Additional context
Metadata
Metadata
Assignees
Labels
No labels