Skip to content

Commit 184a464

Browse files
committed
Fix typos
1 parent a81f3f5 commit 184a464

File tree

4 files changed

+36
-33
lines changed

4 files changed

+36
-33
lines changed

docs/source/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Simulating two-axis tracking solar collectors
22

3-
twoaxistracking is a python package for simulating the performance of two-axis tracking solar collectors, particularly for calculating self-shading.
3+
`twoaxistracking` is a python package for simulating two-axis tracking solar collectors, particularly self-shading.
44

55
For a quick introduction to the package, check out the [intro tutorial](../notebooks/intro_tutorial) which demonstrates the main functionality. For further details, check out the [code documentation](../documentation).
66

docs/source/installation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,6 @@ The main non-standard dependency is `shapely`, which handles the geometric opera
88

99
conda install shapely
1010

11-
The solar modeling library `pvlib` is recommended for calculating the solar position and can be installed by the command:
11+
The solar energy modeling library `pvlib` is recommended for calculating the solar position and can be installed by the command:
1212

1313
pip install pvlib

docs/source/notebooks/field_layout_discretization.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -243,7 +243,7 @@
243243
"metadata": {},
244244
"source": [
245245
"## Visualization of layout discretization\n",
246-
"The following plots illustrate the discrete aspect ratios and offsets for GCR=0.2 and GCR=0.3. Note, each point shown is simulated for the all discrete rotations."
246+
"The following plot illustrates the discrete aspect ratios and offsets for GCR=0.2 and GCR=0.3. Note, each point shown is simulated for the all discrete rotations."
247247
]
248248
},
249249
{
@@ -296,7 +296,7 @@
296296
],
297297
"metadata": {
298298
"kernelspec": {
299-
"display_name": "Python 3",
299+
"display_name": "Python 3 (ipykernel)",
300300
"language": "python",
301301
"name": "python3"
302302
},
@@ -310,7 +310,7 @@
310310
"name": "python",
311311
"nbconvert_exporter": "python",
312312
"pygments_lexer": "ipython3",
313-
"version": "3.8.5"
313+
"version": "3.7.11"
314314
}
315315
},
316316
"nbformat": 4,

docs/source/notebooks/reference_dataset.ipynb

Lines changed: 31 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -52,12 +52,12 @@
5252
"metadata": {},
5353
"source": [
5454
"## Load the dataset\n",
55-
"The original dataset is a fixed-width-file (fwf), whih can be conveniently parsed using the pandas `read_fwf` function:"
55+
"The original dataset is a fixed-width-file (fwf), which can be conveniently parsed using the pandas `read_fwf` function:"
5656
]
5757
},
5858
{
5959
"cell_type": "code",
60-
"execution_count": 13,
60+
"execution_count": 3,
6161
"metadata": {},
6262
"outputs": [
6363
{
@@ -160,15 +160,15 @@
160160
"4 76 1 1 1 15 0.88 0.00 -2.78"
161161
]
162162
},
163-
"execution_count": 13,
163+
"execution_count": 3,
164164
"metadata": {},
165165
"output_type": "execute_result"
166166
}
167167
],
168168
"source": [
169169
"data_url = 'https://www.nrel.gov/grid/solar-resource/assets/data/f06.txt'\n",
170170
"\n",
171-
"# Read file as a fixed-with-file (fwf)\n",
171+
"# Read file\n",
172172
"df_barstow = pd.read_fwf(data_url, skiprows=[0,2])\n",
173173
"\n",
174174
"# Only keep data from 1976\n",
@@ -183,12 +183,12 @@
183183
"source": [
184184
"<br>\n",
185185
"\n",
186-
"Next, we set the index to datetime:"
186+
"Then, we set the index to datetime:"
187187
]
188188
},
189189
{
190190
"cell_type": "code",
191-
"execution_count": 14,
191+
"execution_count": 4,
192192
"metadata": {
193193
"tags": [
194194
"hide-input"
@@ -265,14 +265,14 @@
265265
"1976-01-01 01:15:00-08:00 0.88 0.00 -2.78"
266266
]
267267
},
268-
"execution_count": 14,
268+
"execution_count": 4,
269269
"metadata": {},
270270
"output_type": "execute_result"
271271
}
272272
],
273273
"source": [
274-
"# This step requires defining a custom function (*convert_to_datetime*) for converting\n",
275-
"# the timestamps to datetime, as the time timestamps do not following the ISO convention\n",
274+
"# This step requires defining a custom function (convert_to_datetime) for converting\n",
275+
"# the timestamps to datetime, as the time timestamps do not follow the ISO convention\n",
276276
"# for denoting midnight as 00:00, but rather represents midnight as 24:00.\n",
277277
"def convert_to_datetime(time):\n",
278278
" \"\"\"Convert string with instances of midnight as\n",
@@ -305,12 +305,12 @@
305305
"source": [
306306
"<br>\n",
307307
"\n",
308-
"Next, the columns are renamed in order to conform to the standard pvlib names:"
308+
"Next, the columns are renamed in order to conform to the [standard pvlib names](https://pvlib-python.readthedocs.io/en/stable/variables_style_rules.html):"
309309
]
310310
},
311311
{
312312
"cell_type": "code",
313-
"execution_count": 17,
313+
"execution_count": 5,
314314
"metadata": {},
315315
"outputs": [
316316
{
@@ -383,7 +383,7 @@
383383
"1976-01-01 01:15:00-08:00 0.88 0.00 -2.78"
384384
]
385385
},
386-
"execution_count": 17,
386+
"execution_count": 5,
387387
"metadata": {},
388388
"output_type": "execute_result"
389389
}
@@ -410,7 +410,7 @@
410410
},
411411
{
412412
"cell_type": "code",
413-
"execution_count": 18,
413+
"execution_count": 6,
414414
"metadata": {},
415415
"outputs": [
416416
{
@@ -539,7 +539,7 @@
539539
"1976-01-01 01:15:00-08:00 -3.212865 1413.981805 "
540540
]
541541
},
542-
"execution_count": 18,
542+
"execution_count": 6,
543543
"metadata": {},
544544
"output_type": "execute_result"
545545
}
@@ -559,14 +559,14 @@
559559
"source": [
560560
"## Removal of erroneous data\n",
561561
"\n",
562-
"The removal of erroneous data has been done by manually inspecting each day.\n",
562+
"The identification of erroneous data has been done by manually inspecting each day.\n",
563563
"\n",
564564
"The identified erroneous values are set to nan:"
565565
]
566566
},
567567
{
568568
"cell_type": "code",
569-
"execution_count": 19,
569+
"execution_count": 7,
570570
"metadata": {},
571571
"outputs": [],
572572
"source": [
@@ -632,12 +632,14 @@
632632
},
633633
{
634634
"cell_type": "code",
635-
"execution_count": 25,
635+
"execution_count": 8,
636636
"metadata": {},
637637
"outputs": [],
638638
"source": [
639-
"df['dni_inplane'] = (df['dni'] * np.cos(np.deg2rad(df['apparent_zenith']))).clip(lower=0)\n",
640-
"df['dhi'] = (df['ghi'] - df['dni_inplane']).clip(lower=0)\n",
639+
"# Calculate beam/direct horizontal irradiance (BHI)\n",
640+
"df['bhi'] = (df['dni'] * np.cos(np.deg2rad(df['apparent_zenith']))).clip(lower=0)\n",
641+
"# Calculate diffuse horizontal irradiance (DHI)\n",
642+
"df['dhi'] = (df['ghi'] - df['bhi']).clip(lower=0)\n",
641643
"\n",
642644
"# Calculate normalized irradiance values\n",
643645
"df['Kn'] = df['dni'] / df['dni_extra']\n",
@@ -661,7 +663,7 @@
661663
},
662664
{
663665
"cell_type": "code",
664-
"execution_count": 26,
666+
"execution_count": 9,
665667
"metadata": {
666668
"tags": [
667669
"hide-input"
@@ -722,12 +724,12 @@
722724
"\n",
723725
"In order to detect possible shading from nearby objects and hills, it is useful to visualize the maximum irradiance as a function of solar elevation and zenith angle. Particularly the DNI plot is helpful in identifiying the local obstruction free horizon line.\n",
724726
"\n",
725-
"Due to the 15-minute resolution a 2-degree angle resolution is used."
727+
"Due to the 15-minute resolution a 2-degree resolution is used."
726728
]
727729
},
728730
{
729731
"cell_type": "code",
730-
"execution_count": 27,
732+
"execution_count": 10,
731733
"metadata": {
732734
"tags": [
733735
"hide-input"
@@ -740,7 +742,7 @@
740742
"Text(0.5, 1.0, 'Maximum irradiance as a function of solar elevation and azimuth')"
741743
]
742744
},
743-
"execution_count": 27,
745+
"execution_count": 10,
744746
"metadata": {},
745747
"output_type": "execute_result"
746748
},
@@ -791,12 +793,13 @@
791793
"cell_type": "markdown",
792794
"metadata": {},
793795
"source": [
794-
"### Quality-check plots"
796+
"### Quality-check plots\n",
797+
"The below plots visualize the normalize irradiance values. The blue lines represents the [quality-control limits recommend by the BSRN](https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf)."
795798
]
796799
},
797800
{
798801
"cell_type": "code",
799-
"execution_count": 28,
802+
"execution_count": 11,
800803
"metadata": {
801804
"tags": [
802805
"hide-input"
@@ -845,7 +848,7 @@
845848
},
846849
{
847850
"cell_type": "code",
848-
"execution_count": 30,
851+
"execution_count": 12,
849852
"metadata": {},
850853
"outputs": [
851854
{
@@ -856,7 +859,7 @@
856859
"dtype: object"
857860
]
858861
},
859-
"execution_count": 30,
862+
"execution_count": 12,
860863
"metadata": {},
861864
"output_type": "execute_result"
862865
}
@@ -869,7 +872,7 @@
869872
"cell_type": "markdown",
870873
"metadata": {},
871874
"source": [
872-
"Clearly, the DNI measurements are errornous to a much higher degree than the GHI measurements. This can partly be due to the fact that it is much easier to detect a faulty DNI measurements, and also that the DNI sensor is much more prone to soiling and is affected by tracker errors and misalignment."
875+
"Clearly, the DNI measurements are errornous to a much higher degree than the GHI measurements. This is partly due to the fact that it is much easier to detect a faulty DNI measurement, but also that DNI sensors are much more prone to soiling and affected by tracker errors and misalignment."
873876
]
874877
},
875878
{

0 commit comments

Comments
 (0)