@@ -117,7 +117,7 @@ def fit(self, *args, inference=None, **kwargs):
117117 self
118118
119119 """
120- pass
120+ raise NotImplementedError ( "Abstract method" )
121121
122122 def _wrap_fit (m ):
123123 @wraps (m )
@@ -160,7 +160,7 @@ def effect(self, X=None, *, T0, T1):
160160 Note that when Y is a vector rather than a 2-dimensional array, the corresponding
161161 singleton dimension will be collapsed (so this method will return a vector)
162162 """
163- pass
163+ raise NotImplementedError ( "Abstract method" )
164164
165165 @abc .abstractmethod
166166 def marginal_effect (self , T , X = None ):
@@ -185,7 +185,7 @@ def marginal_effect(self, T, X=None):
185185 the corresponding singleton dimensions in the output will be collapsed
186186 (e.g. if both are vectors, then the output of this method will also be a vector)
187187 """
188- pass
188+ raise NotImplementedError ( "Abstract method" )
189189
190190 def ate (self , X = None , * , T0 , T1 ):
191191 """
@@ -355,7 +355,7 @@ def effect_interval(self, X=None, *, T0=0, T1=1, alpha=0.05):
355355 lower, upper : tuple(type of :meth:`effect(X, T0, T1)<effect>`, type of :meth:`effect(X, T0, T1))<effect>` )
356356 The lower and the upper bounds of the confidence interval for each quantity.
357357 """
358- pass
358+ raise NotImplementedError ( "Defer to inference" )
359359
360360 @_defer_to_inference
361361 def effect_inference (self , X = None , * , T0 = 0 , T1 = 1 ):
@@ -379,7 +379,7 @@ def effect_inference(self, X=None, *, T0=0, T1=1):
379379 can on demand calculate confidence interval, z statistic and p value. It can also output
380380 a dataframe summary of these inference results.
381381 """
382- pass
382+ raise NotImplementedError ( "Defer to inference" )
383383
384384 @_defer_to_inference
385385 def marginal_effect_interval (self , T , X = None , * , alpha = 0.05 ):
@@ -403,7 +403,7 @@ def marginal_effect_interval(self, T, X=None, *, alpha=0.05):
403403 type of :meth:`marginal_effect(T, X)<marginal_effect>` )
404404 The lower and the upper bounds of the confidence interval for each quantity.
405405 """
406- pass
406+ raise NotImplementedError ( "Defer to inference" )
407407
408408 @_defer_to_inference
409409 def marginal_effect_inference (self , T , X = None ):
@@ -425,7 +425,7 @@ def marginal_effect_inference(self, T, X=None):
425425 can on demand calculate confidence interval, z statistic and p value. It can also output
426426 a dataframe summary of these inference results.
427427 """
428- pass
428+ raise NotImplementedError ( "Defer to inference" )
429429
430430 @_defer_to_inference
431431 def ate_interval (self , X = None , * , T0 , T1 , alpha = 0.05 ):
@@ -450,7 +450,7 @@ def ate_interval(self, X=None, *, T0, T1, alpha=0.05):
450450 lower, upper : tuple(type of :meth:`ate(X, T0, T1)<ate>`, type of :meth:`ate(X, T0, T1))<ate>` )
451451 The lower and the upper bounds of the confidence interval for each quantity.
452452 """
453- pass
453+ raise NotImplementedError ( "Defer to inference" )
454454
455455 @_defer_to_inference
456456 def ate_inference (self , X = None , * , T0 , T1 ):
@@ -474,7 +474,7 @@ def ate_inference(self, X=None, *, T0, T1):
474474 can on demand calculate confidence interval, z statistic and p value. It can also output
475475 a dataframe summary of these inference results.
476476 """
477- pass
477+ raise NotImplementedError ( "Defer to inference" )
478478
479479 @_defer_to_inference
480480 def marginal_ate_interval (self , T , X = None , * , alpha = 0.05 ):
@@ -498,7 +498,7 @@ def marginal_ate_interval(self, T, X=None, *, alpha=0.05):
498498 type of :meth:`marginal_ate(T, X)<marginal_ate>` )
499499 The lower and the upper bounds of the confidence interval for each quantity.
500500 """
501- pass
501+ raise NotImplementedError ( "Defer to inference" )
502502
503503 @_defer_to_inference
504504 def marginal_ate_inference (self , T , X = None ):
@@ -520,7 +520,7 @@ def marginal_ate_inference(self, T, X=None):
520520 can on demand calculate confidence interval, z statistic and p value. It can also output
521521 a dataframe summary of these inference results.
522522 """
523- pass
523+ raise NotImplementedError ( "Defer to inference" )
524524
525525 @property
526526 def dowhy (self ):
@@ -564,7 +564,7 @@ def const_marginal_effect(self, X=None):
564564 rather than a 2-dimensional array, the corresponding singleton dimensions in the output will be collapsed
565565 (e.g. if both are vectors, then the output of this method will also be a vector)
566566 """
567- pass
567+ raise NotImplementedError ( "Abstract method" )
568568
569569 def effect (self , X = None , * , T0 , T1 ):
570570 """
@@ -697,7 +697,7 @@ def const_marginal_effect_interval(self, X=None, *, alpha=0.05):
697697 type of :meth:`const_marginal_effect(X)<const_marginal_effect>` )
698698 The lower and the upper bounds of the confidence interval for each quantity.
699699 """
700- pass
700+ raise NotImplementedError ( "Defer to inference" )
701701
702702 @BaseCateEstimator ._defer_to_inference
703703 def const_marginal_effect_inference (self , X = None ):
@@ -717,7 +717,7 @@ def const_marginal_effect_inference(self, X=None):
717717 can on demand calculate confidence interval, z statistic and p value. It can also output
718718 a dataframe summary of these inference results.
719719 """
720- pass
720+ raise NotImplementedError ( "Defer to inference" )
721721
722722 def const_marginal_ate (self , X = None ):
723723 """
@@ -759,7 +759,7 @@ def const_marginal_ate_interval(self, X=None, *, alpha=0.05):
759759 type of :meth:`const_marginal_ate(X)<const_marginal_ate>` )
760760 The lower and the upper bounds of the confidence interval for each quantity.
761761 """
762- pass
762+ raise NotImplementedError ( "Defer to inference" )
763763
764764 @BaseCateEstimator ._defer_to_inference
765765 def const_marginal_ate_inference (self , X = None ):
@@ -779,20 +779,19 @@ def const_marginal_ate_inference(self, X=None):
779779 can on demand calculate confidence interval, z statistic and p value. It can also output
780780 a dataframe summary of these inference results.
781781 """
782- pass
783782
784783 def marginal_ate (self , T , X = None ):
785784 return np .mean (self .marginal_effect (T , X = X ), axis = 0 )
786785 marginal_ate .__doc__ = BaseCateEstimator .marginal_ate .__doc__
787786
788787 @BaseCateEstimator ._defer_to_inference
789788 def marginal_ate_interval (self , T , X = None , * , alpha = 0.05 ):
790- pass
789+ raise NotImplementedError ( "Defer to inference" )
791790 marginal_ate_interval .__doc__ = BaseCateEstimator .marginal_ate_interval .__doc__
792791
793792 @BaseCateEstimator ._defer_to_inference
794793 def marginal_ate_inference (self , T , X = None ):
795- pass
794+ raise NotImplementedError ( "Defer to inference" )
796795 marginal_ate_inference .__doc__ = BaseCateEstimator .marginal_ate_inference .__doc__
797796
798797 def shap_values (self , X , * , feature_names = None , treatment_names = None , output_names = None , background_samples = 100 ):
@@ -1003,7 +1002,7 @@ def coef__interval(self, *, alpha=0.05):
10031002 lb, ub: tuple(type of :meth:`coef_()<coef_>`, type of :meth:`coef_()<coef_>`)
10041003 The lower and upper bounds of the confidence interval for each quantity.
10051004 """
1006- pass
1005+ raise NotImplementedError ( "Defer to inference" )
10071006
10081007 @BaseCateEstimator ._defer_to_inference
10091008 def coef__inference (self ):
@@ -1015,7 +1014,7 @@ def coef__inference(self):
10151014 InferenceResults: object
10161015 The inference of the coefficients in the final linear model
10171016 """
1018- pass
1017+ raise NotImplementedError ( "Defer to inference" )
10191018
10201019 @BaseCateEstimator ._defer_to_inference
10211020 def intercept__interval (self , * , alpha = 0.05 ):
@@ -1033,7 +1032,7 @@ def intercept__interval(self, *, alpha=0.05):
10331032 lower, upper: tuple(type of :meth:`intercept_()<intercept_>`, type of :meth:`intercept_()<intercept_>`)
10341033 The lower and upper bounds of the confidence interval.
10351034 """
1036- pass
1035+ raise NotImplementedError ( "Defer to inference" )
10371036
10381037 @BaseCateEstimator ._defer_to_inference
10391038 def intercept__inference (self ):
@@ -1045,7 +1044,7 @@ def intercept__inference(self):
10451044 InferenceResults: object
10461045 The inference of the intercept in the final linear model
10471046 """
1048- pass
1047+ raise NotImplementedError ( "Defer to inference" )
10491048
10501049 def summary (self , alpha = 0.05 , value = 0 , decimals = 3 , feature_names = None , treatment_names = None , output_names = None ):
10511050 """ The summary of coefficient and intercept in the linear model of the constant marginal treatment
@@ -1274,7 +1273,7 @@ def coef__interval(self, T, *, alpha=0.05):
12741273 lower, upper: tuple(type of :meth:`coef_(T)<coef_>`, type of :meth:`coef_(T)<coef_>`)
12751274 The lower and upper bounds of the confidence interval for each quantity.
12761275 """
1277- pass
1276+ raise NotImplementedError ( "Defer to inference" )
12781277
12791278 @BaseCateEstimator ._defer_to_inference
12801279 def coef__inference (self , T ):
@@ -1291,7 +1290,7 @@ def coef__inference(self, T):
12911290 InferenceResults: object
12921291 The inference of the coefficients in the final linear model
12931292 """
1294- pass
1293+ raise NotImplementedError ( "Defer to inference" )
12951294
12961295 @BaseCateEstimator ._defer_to_inference
12971296 def intercept__interval (self , T , * , alpha = 0.05 ):
@@ -1311,7 +1310,7 @@ def intercept__interval(self, T, *, alpha=0.05):
13111310 lower, upper: tuple(type of :meth:`intercept_(T)<intercept_>`, type of :meth:`intercept_(T)<intercept_>`)
13121311 The lower and upper bounds of the confidence interval.
13131312 """
1314- pass
1313+ raise NotImplementedError ( "Defer to inference" )
13151314
13161315 @BaseCateEstimator ._defer_to_inference
13171316 def intercept__inference (self , T ):
@@ -1329,7 +1328,7 @@ def intercept__inference(self, T):
13291328 The inference of the intercept in the final linear model
13301329
13311330 """
1332- pass
1331+ raise NotImplementedError ( "Defer to inference" )
13331332
13341333 def summary (self , T , * , alpha = 0.05 , value = 0 , decimals = 3 ,
13351334 feature_names = None , treatment_names = None , output_names = None ):
0 commit comments