1414from econml .inference import (BootstrapInference , NormalInferenceResults ,
1515 EmpiricalInferenceResults , PopulationSummaryResults )
1616from econml .sklearn_extensions .linear_model import StatsModelsLinearRegression , DebiasedLasso
17- from econml .utilities import get_input_columns
17+ from econml .utilities import get_feature_names_or_default , get_input_columns
1818
1919
2020class TestInference (unittest .TestCase ):
@@ -51,8 +51,9 @@ def test_summary(self):
5151 summary_results = cate_est .summary ()
5252 coef_rows = np .asarray (summary_results .tables [0 ].data )[1 :, 0 ]
5353 default_names = get_input_columns (TestInference .X )
54- fnames = PolynomialFeatures (degree = 2 , include_bias = False ).fit (
55- TestInference .X ).get_feature_names (default_names )
54+ fnames = get_feature_names_or_default (PolynomialFeatures (degree = 2 ,
55+ include_bias = False ).fit (TestInference .X ),
56+ default_names )
5657 np .testing .assert_array_equal (coef_rows , fnames )
5758 intercept_rows = np .asarray (summary_results .tables [1 ].data )[1 :, 0 ]
5859 np .testing .assert_array_equal (intercept_rows , ['cate_intercept' ])
@@ -71,8 +72,9 @@ def test_summary(self):
7172 fnames = ['Q' + str (i ) for i in range (TestInference .d_x )]
7273 summary_results = cate_est .summary (feature_names = fnames )
7374 coef_rows = np .asarray (summary_results .tables [0 ].data )[1 :, 0 ]
74- fnames = PolynomialFeatures (degree = 2 , include_bias = False ).fit (
75- TestInference .X ).get_feature_names (input_features = fnames )
75+ fnames = get_feature_names_or_default (PolynomialFeatures (degree = 2 ,
76+ include_bias = False ).fit (TestInference .X ),
77+ fnames )
7678 np .testing .assert_array_equal (coef_rows , fnames )
7779 cate_est = LinearDML (model_t = LinearRegression (), model_y = LinearRegression (), featurizer = None )
7880 cate_est .fit (
@@ -145,8 +147,9 @@ def test_summary_discrete(self):
145147 summary_results = cate_est .summary (T = 1 )
146148 coef_rows = np .asarray (summary_results .tables [0 ].data )[1 :, 0 ]
147149 default_names = get_input_columns (TestInference .X )
148- fnames = PolynomialFeatures (degree = 2 , include_bias = False ).fit (
149- TestInference .X ).get_feature_names (default_names )
150+ fnames = get_feature_names_or_default (PolynomialFeatures (degree = 2 ,
151+ include_bias = False ).fit (TestInference .X ),
152+ default_names )
150153 np .testing .assert_array_equal (coef_rows , fnames )
151154 intercept_rows = np .asarray (summary_results .tables [1 ].data )[1 :, 0 ]
152155 np .testing .assert_array_equal (intercept_rows , ['cate_intercept' ])
@@ -166,8 +169,9 @@ def test_summary_discrete(self):
166169 fnames = ['Q' + str (i ) for i in range (TestInference .d_x )]
167170 summary_results = cate_est .summary (T = 1 , feature_names = fnames )
168171 coef_rows = np .asarray (summary_results .tables [0 ].data )[1 :, 0 ]
169- fnames = PolynomialFeatures (degree = 2 , include_bias = False ).fit (
170- TestInference .X ).get_feature_names (input_features = fnames )
172+ fnames = get_feature_names_or_default (PolynomialFeatures (degree = 2 ,
173+ include_bias = False ).fit (TestInference .X ),
174+ fnames )
171175 np .testing .assert_array_equal (coef_rows , fnames )
172176 cate_est = LinearDRLearner (model_regression = LinearRegression (),
173177 model_propensity = LogisticRegression (), featurizer = None )
0 commit comments