@@ -1627,10 +1627,8 @@ def coef__interval(self, alpha=0.05):
16271627 coef__interval : {tuple ((p, d) array, (p,d) array), tuple ((d,) array, (d,) array)}
16281628 The lower and upper bounds of the confidence interval of the coefficients
16291629 """
1630- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1631- for p , err in zip (self .coef_ , self .coef_stderr_ )]), \
1632- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1633- for p , err in zip (self .coef_ , self .coef_stderr_ )])
1630+ return (_safe_norm_ppf (alpha / 2 , loc = self .coef_ , scale = self .coef_stderr_ ),
1631+ _safe_norm_ppf (1 - alpha / 2 , loc = self .coef_ , scale = self .coef_stderr_ ))
16341632
16351633 def intercept__interval (self , alpha = 0.05 ):
16361634 """
@@ -1651,14 +1649,8 @@ def intercept__interval(self, alpha=0.05):
16511649 return (0 if self ._n_out == 0 else np .zeros (self ._n_out )), \
16521650 (0 if self ._n_out == 0 else np .zeros (self ._n_out ))
16531651
1654- if self ._n_out == 0 :
1655- return _safe_norm_ppf (alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ), \
1656- _safe_norm_ppf (1 - alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ )
1657- else :
1658- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1659- for p , err in zip (self .intercept_ , self .intercept_stderr_ )]), \
1660- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1661- for p , err in zip (self .intercept_ , self .intercept_stderr_ )])
1652+ return (_safe_norm_ppf (alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ),
1653+ _safe_norm_ppf (1 - alpha / 2 , loc = self .intercept_ , scale = self .intercept_stderr_ ))
16621654
16631655 def predict_interval (self , X , alpha = 0.05 ):
16641656 """
@@ -1677,10 +1669,12 @@ def predict_interval(self, X, alpha=0.05):
16771669 prediction_intervals : {tuple ((n,) array, (n,) array), tuple ((n,p) array, (n,p) array)}
16781670 The lower and upper bounds of the confidence intervals of the predicted mean outcomes
16791671 """
1680- return np .array ([_safe_norm_ppf (alpha / 2 , loc = p , scale = err )
1681- for p , err in zip (self .predict (X ), self .prediction_stderr (X ))]), \
1682- np .array ([_safe_norm_ppf (1 - alpha / 2 , loc = p , scale = err )
1683- for p , err in zip (self .predict (X ), self .prediction_stderr (X ))])
1672+
1673+ pred = self .predict (X )
1674+ pred_stderr = self .prediction_stderr (X )
1675+
1676+ return (_safe_norm_ppf (alpha / 2 , loc = pred , scale = pred_stderr ),
1677+ _safe_norm_ppf (1 - alpha / 2 , loc = pred , scale = pred_stderr ))
16841678
16851679
16861680class StatsModelsLinearRegression (_StatsModelsWrapper ):
0 commit comments