@@ -29,9 +29,8 @@ def _get_data(self):
2929 X = np .random .normal (size = (1000 , 3 ))
3030 T = np .random .binomial (2 , scipy .special .expit (X [:, 0 ]))
3131 sigma = 0.001
32- y = (1 + .5 * X [:, 0 ]) * T + X [:, 0 ] + np .random .normal (0 , sigma , size = (1000 ,))
32+ y = (1 + .5 * X [:, 0 ]) * T + X [:, 0 ] + np .random .normal (0 , sigma , size = (1000 ,))
3333 return y , T , X , X [:, 0 ]
34-
3534
3635 def test_comparison (self ):
3736 def reg ():
@@ -53,7 +52,7 @@ def clf():
5352 ('dalearner' , DomainAdaptationLearner (models = reg (), final_models = reg (), propensity_model = clf ())),
5453 ('slearner' , SLearner (overall_model = reg ())),
5554 ('tlearner' , TLearner (models = reg ())),
56- ('drlearner' , DRLearner (model_propensity = 'auto' ,model_regression = 'auto' ,
55+ ('drlearner' , DRLearner (model_propensity = 'auto' , model_regression = 'auto' ,
5756 model_final = reg (), cv = 3 )),
5857 ('rlearner' , NonParamDML (model_y = reg (), model_t = clf (), model_final = reg (),
5958 discrete_treatment = True , cv = 3 )),
@@ -72,8 +71,8 @@ def clf():
7271 multitask_model_final = False ,
7372 featurizer = None ,
7473 min_propensity = 1e-6 ,
75- cv = 3 ,
76- mc_iters = 2 ,
74+ cv = 3 ,
75+ mc_iters = 2 ,
7776 mc_agg = 'median' )
7877 scorer .fit (Y_val , T_val , X = X_val )
7978 rscore = [scorer .score (mdl ) for _ , mdl in models ]
0 commit comments