Skip to content

Commit 0f54fb4

Browse files
committed
updated according to feedback from Kun
1 parent 7511236 commit 0f54fb4

File tree

3 files changed

+2
-4
lines changed

3 files changed

+2
-4
lines changed

causallearn/utils/SyntheticDataset.py

Whitespace-only changes.

docs/source/search_methods_index/Constrained-based causal discovery methods/FCI.rst

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -15,8 +15,6 @@ Usage
1515
1616
from causallearn.search.ConstraintBased.FCI import fci
1717
G = fci(data, indep_test, alpha, verbose=True)
18-
G.to_nx_graph()
19-
G.draw_nx_graph(skel=False)
2018
2119
Parameters
2220
-------------------
@@ -37,6 +35,6 @@ and n_features is the number of features.
3735

3836
Returns
3937
-------------------
40-
**cg** : a CausalGraph object. Nodes in the graph correspond to the column indices in the data.
38+
**G** : a GeneralGraph object. Nodes in the graph correspond to the column indices in the data. For visualization, please refer to the `running example <https://github.com/cmu-phil/causal-learn/tree/main/tests>`_.
4139

4240
.. [1] Spirtes, P., Meek, C., & Richardson, T. (1995, August). Causal inference in the presence of latent variables and selection bias. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (pp. 499-506).

docs/source/search_methods_index/Constrained-based causal discovery methods/PC.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ For detailed usage, please kindly refer to its `usage example <https://github.co
5959

6060
Returns
6161
-------------------
62-
**cg** : a CausalGraph object. Nodes in the graph correspond to the column indices in the data.
62+
**cg** : a CausalGraph object. Nodes in the graph correspond to the column indices in the data. For visualization by networkx, green edges are undirected, blue edges are directed and red edges are bi-directed.
6363

6464
.. [1] Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT press.
6565
.. [2] Tu, R., Zhang, C., Ackermann, P., Mohan, K., Kjellström, H., & Zhang, K. (2019, April). Causal discovery in the presence of missing data. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 1762-1770). PMLR.

0 commit comments

Comments
 (0)