Skip to content

Commit 58e770e

Browse files
committed
updated docs
1 parent 494fd62 commit 58e770e

File tree

6 files changed

+12
-6
lines changed

6 files changed

+12
-6
lines changed

docs/source/search_methods_index/Constrained-based causal discovery methods/CDNOD.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,8 @@ Usage
2020
2121
Parameters
2222
-------------------
23-
**data**: data set (numpy ndarray).
23+
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
24+
and n_features is the number of features.
2425

2526
**c_indx**: time index or domain index that captures the unobserved changing factors.
2627

docs/source/search_methods_index/Constrained-based causal discovery methods/FCI.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,8 @@ Usage
2020
2121
Parameters
2222
-------------------
23-
**data**: Input data matrix
23+
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
24+
and n_features is the number of features.
2425

2526
**alpha**: Significance level of individual partial correlation tests.
2627

docs/source/search_methods_index/Constrained-based causal discovery methods/PC.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,8 @@ Usage
2323
2424
Parameters
2525
-------------------
26-
**data**: data set (numpy ndarray).
26+
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
27+
and n_features is the number of features.
2728

2829
**alpha**: desired significance level (float) in (0, 1).
2930

docs/source/search_methods_index/Granger causality/LinearGranger.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,8 @@ Usage
1919
Parameters
2020
-------------------
2121

22-
**data**: input data (n, d).
22+
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
23+
and n_features is the number of features.
2324

2425
Returns
2526
-------------------

docs/source/search_methods_index/Hidden causal representation learning/gin.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,8 @@ Usage
1717
1818
Parameters
1919
-----------------------------------------------------------
20-
**data**: numpy ndarray. Data set.
20+
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
21+
and n_features is the number of features.
2122

2223
Returns
2324
-----------------------------------------------------------

docs/source/search_methods_index/Score-based causal discovery methods/GES.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,8 @@ Usage
1818
1919
Parameters
2020
-------------------
21-
**X**: Data with T*D dimensions.
21+
**X**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples
22+
and n_features is the number of features.
2223

2324
**score_func**: The score function you would like to use, including (see :ref:`score_functions`.).
2425
- ":ref:`local_score_BIC <BIC score>`": BIC score [3]_.

0 commit comments

Comments
 (0)