Skip to content

Commit e2182f3

Browse files
committed
update doc
1 parent e4e73f8 commit e2182f3

File tree

4 files changed

+10
-0
lines changed

4 files changed

+10
-0
lines changed

docs/source/search_methods_index/Constrained-based causal discovery methods/CDNOD.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,9 @@ Usage
2121
# note that the last node is the c_indx
2222
cg.draw_pydot_graph()
2323
24+
Visualization using pydot is recommended. If specific label names are needed, please refer to this `usage example <https://github.com/cmu-phil/causal-learn/blob/e4e73f8b58510a3cd5a9125ba50c0ac62a425ef3/tests/TestGraphVisualization.py#L106>`_ (e.g., GraphUtils.to_pydot(cg.G, labels=["A", "B", "C"]).
25+
26+
2427
Parameters
2528
-------------------
2629
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples

docs/source/search_methods_index/Constrained-based causal discovery methods/FCI.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,9 @@ Usage
2222
pdy = GraphUtils.to_pydot(G)
2323
pdy.write_png('simple_test.png')
2424
25+
Visualization using pydot is recommended. If specific label names are needed, please refer to this `usage example <https://github.com/cmu-phil/causal-learn/blob/e4e73f8b58510a3cd5a9125ba50c0ac62a425ef3/tests/TestGraphVisualization.py#L106>`_ (e.g., GraphUtils.to_pydot(cg.G, labels=["A", "B", "C"]).
26+
27+
2528
Parameters
2629
-------------------
2730
**dataset**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples

docs/source/search_methods_index/Constrained-based causal discovery methods/PC.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,8 @@ Usage
2626
# cg.to_nx_graph()
2727
# cg.draw_nx_graph(skel=False)
2828
29+
Visualization using pydot is recommended. If specific label names are needed, please refer to this `usage example <https://github.com/cmu-phil/causal-learn/blob/e4e73f8b58510a3cd5a9125ba50c0ac62a425ef3/tests/TestGraphVisualization.py#L106>`_ (e.g., GraphUtils.to_pydot(cg.G, labels=["A", "B", "C"]).
30+
2931
Parameters
3032
-------------------
3133
**data**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples

docs/source/search_methods_index/Score-based causal discovery methods/GES.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,8 @@ Usage
1616
from causallearn.search.ScoreBased.GES import ges
1717
Record = ges(X, score_func, maxP, parameters)
1818
19+
Visualization using pydot is recommended (`usage example <https://github.com/cmu-phil/causal-learn/blob/e4e73f8b58510a3cd5a9125ba50c0ac62a425ef3/tests/TestGES.py#L16>`_). If specific label names are needed, please refer to this `usage example <https://github.com/cmu-phil/causal-learn/blob/e4e73f8b58510a3cd5a9125ba50c0ac62a425ef3/tests/TestGraphVisualization.py#L106>`_ (e.g., GraphUtils.to_pydot(Record['G'], labels=["A", "B", "C"]).
20+
1921
Parameters
2022
-------------------
2123
**X**: numpy.ndarray, shape (n_samples, n_features). Data, where n_samples is the number of samples

0 commit comments

Comments
 (0)