@@ -36,29 +36,29 @@ def test_chisquare_marginal_independence_adult_dataset():
3636 Uses the test data from dagitty.
3737 """
3838 # Comparision values taken from dagitty (DAGitty)
39- lambda_ = "pearson"
39+ method = "pearson"
4040 X = df_adult ["Age" ]
4141 Y = df_adult ["Immigrant" ]
42- result = power_divergence .ind (X = X , Y = Y , method = lambda_ )
42+ result = power_divergence .ind (X = X , Y = Y , method = method )
4343 assert_almost_equal (result .statistic , 57.75 , decimal = 1 )
4444 assert_almost_equal (np .log (result .pvalue ), - 25.47 , decimal = 1 )
4545 assert result .additional_information ["dof" ] == 4
4646
4747 Y = df_adult ["Race" ]
48- result = power_divergence .ind (X = X , Y = Y , method = lambda_ )
48+ result = power_divergence .ind (X = X , Y = Y , method = method )
4949 assert_almost_equal (result .statistic , 56.25 , decimal = 1 )
5050 assert_almost_equal (np .log (result .pvalue ), - 24.75 , decimal = 1 )
5151 assert result .additional_information ["dof" ] == 4
5252
5353 Y = df_adult ["Sex" ]
54- result = power_divergence .ind (X = X , Y = Y , method = lambda_ )
54+ result = power_divergence .ind (X = X , Y = Y , method = method )
5555 assert_almost_equal (result .statistic , 289.62 , decimal = 1 )
5656 assert_almost_equal (np .log (result .pvalue ), - 139.82 , decimal = 1 )
5757 assert result .additional_information ["dof" ] == 4
5858
5959 X = df_adult ["Immigrant" ]
6060 Y = df_adult ["Sex" ]
61- result = power_divergence .ind (X = X , Y = Y , method = lambda_ )
61+ result = power_divergence .ind (X = X , Y = Y , method = method )
6262 assert_almost_equal (result .statistic , 0.2724 , decimal = 1 )
6363 assert_almost_equal (np .log (result .pvalue ), - 0.50 , decimal = 1 )
6464 assert result .additional_information ["dof" ] == 1
@@ -69,18 +69,18 @@ def test_chisquare_conditional_independence_adult_dataset():
6969
7070 Uses the test data from dagitty.
7171 """
72- lambda_ = "pearson"
72+ method = "pearson"
7373 X = df_adult ["Education" ]
7474 Y = df_adult ["HoursPerWeek" ]
7575 condition_on = df_adult [["Age" , "Immigrant" , "Race" , "Sex" ]]
76- result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = lambda_ )
76+ result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = method )
7777 assert_almost_equal (result .statistic , 1460.11 , decimal = 1 )
7878 assert_almost_equal (result .pvalue , 0 , decimal = 1 )
7979 assert result .additional_information ["dof" ] == 316
8080
8181 Y = df_adult ["MaritalStatus" ]
8282 condition_on = df_adult [["Age" , "Sex" ]]
83- result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = lambda_ )
83+ result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = method )
8484 assert_almost_equal (result .statistic , 481.96 , decimal = 1 )
8585 assert_almost_equal (result .pvalue , 0 , decimal = 1 )
8686 assert result .additional_information ["dof" ] == 58
@@ -90,7 +90,7 @@ def test_chisquare_conditional_independence_adult_dataset():
9090 X = df_adult ["Income" ]
9191 Y = df_adult ["Race" ]
9292 condition_on = df_adult [["Age" , "Education" , "HoursPerWeek" , "MaritalStatus" ]]
93- result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = lambda_ )
93+ result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = method )
9494
9595 assert_almost_equal (result .statistic , 66.39 , decimal = 1 )
9696 assert_almost_equal (result .pvalue , 0.99 , decimal = 1 )
@@ -99,14 +99,14 @@ def test_chisquare_conditional_independence_adult_dataset():
9999 X = df_adult ["Immigrant" ]
100100 Y = df_adult ["Income" ]
101101 condition_on = df_adult [["Age" , "Education" , "HoursPerWeek" , "MaritalStatus" ]]
102- result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = lambda_ )
102+ result = power_divergence .condind (X = X , Y = Y , condition_on = condition_on , method = method )
103103 assert_almost_equal (result .statistic , 65.59 , decimal = 1 )
104104 assert_almost_equal (result .pvalue , 0.999 , decimal = 2 )
105105 assert result .additional_information ["dof" ] == 131
106106
107107
108108@pytest .mark .parametrize (
109- "lambda_ " ,
109+ "method " ,
110110 [
111111 "pearson" , # chi-square
112112 "log-likelihood" , # G^2
@@ -116,17 +116,17 @@ def test_chisquare_conditional_independence_adult_dataset():
116116 "cressie-read" , # Cressie-read
117117 ],
118118)
119- def test_chisquare_when_dependent_given_different_lambda_on_testdata ( lambda_ ):
119+ def test_chisquare_when_dependent_given_different_methodon_testdata ( method ):
120120 assert (
121- power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Immigrant" ], method = lambda_ ).pvalue
121+ power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Immigrant" ], method = method ).pvalue
122122 < 0.05
123123 )
124124
125- assert power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Race" ], method = lambda_ ).pvalue < 0.05
125+ assert power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Race" ], method = method ).pvalue < 0.05
126126
127- assert power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Sex" ], method = lambda_ ).pvalue < 0.05
127+ assert power_divergence .ind (X = df_adult ["Age" ], Y = df_adult ["Sex" ], method = method ).pvalue < 0.05
128128 assert (
129- power_divergence .ind (X = df_adult ["Immigrant" ], Y = df_adult ["Sex" ], method = lambda_ ).pvalue
129+ power_divergence .ind (X = df_adult ["Immigrant" ], Y = df_adult ["Sex" ], method = method ).pvalue
130130 >= 0.05
131131 )
132132
@@ -135,7 +135,7 @@ def test_chisquare_when_dependent_given_different_lambda_on_testdata(lambda_):
135135 X = df_adult ["Education" ],
136136 Y = df_adult ["HoursPerWeek" ],
137137 condition_on = df_adult [["Age" , "Immigrant" , "Race" , "Sex" ]],
138- method = lambda_ ,
138+ method = method ,
139139 ).pvalue
140140 < 0.05
141141 )
@@ -144,14 +144,14 @@ def test_chisquare_when_dependent_given_different_lambda_on_testdata(lambda_):
144144 X = df_adult ["Education" ],
145145 Y = df_adult ["MaritalStatus" ],
146146 condition_on = df_adult [["Age" , "Sex" ]],
147- method = lambda_ ,
147+ method = method ,
148148 ).pvalue
149149 < 0.05
150150 )
151151
152152
153153@pytest .mark .parametrize (
154- "lambda_ " ,
154+ "method " ,
155155 [
156156 "pearson" , # chi-square
157157 "log-likelihood" , # G^2
@@ -161,12 +161,12 @@ def test_chisquare_when_dependent_given_different_lambda_on_testdata(lambda_):
161161 "cressie-read" , # Cressie-read
162162 ],
163163)
164- def test_chisquare_when_exactly_dependent_given_different_lambda_ ( lambda_ ):
164+ def test_chisquare_when_exactly_dependent_given_different_method ( method ):
165165 x = np .random .choice ([0 , 1 ], size = 1000 )
166166 y = x .copy ()
167167 df = pd .DataFrame ({"x" : x , "y" : y })
168168
169- result = power_divergence .ind (X = df ["x" ], Y = df ["y" ], method = lambda_ )
169+ result = power_divergence .ind (X = df ["x" ], Y = df ["y" ], method = method )
170170 assert result .additional_information ["dof" ] == 1
171171 assert_almost_equal (result .pvalue , 0 , decimal = 5 )
172172
0 commit comments