@@ -966,8 +966,8 @@ def plot_phase_weights(
966966 if total_intensity_normalize :
967967 sub = self .int_total > 0.0
968968 for a0 in range (self .num_fits ):
969- phase_weights [:, :, a0 ][sub ] /= ( self .int_total [sub ]+ 1e-12 )
970- phase_residuals [sub ] /= ( self .int_total [sub ]+ 1e-12 )
969+ phase_weights [:, :, a0 ][sub ] /= self .int_total [sub ] + 1e-12
970+ phase_residuals [sub ] /= self .int_total [sub ] + 1e-12
971971
972972 # intensity range for plotting
973973 if weight_normalize :
@@ -1112,7 +1112,7 @@ def plot_phase_maps(
11121112 if total_intensity_normalize :
11131113 sub = self .int_total > 0.0
11141114 for a0 in range (self .num_fits ):
1115- phase_weights [:, :, a0 ][sub ] /= ( self .int_total [sub ]+ 1e-12 )
1115+ phase_weights [:, :, a0 ][sub ] /= self .int_total [sub ] + 1e-12
11161116
11171117 # intensity range for plotting
11181118 if weight_normalize :
@@ -1276,7 +1276,6 @@ def plot_dominant_phase(
12761276
12771277 """
12781278
1279-
12801279 if phase_colors is None :
12811280 phase_colors = np .array (
12821281 [
@@ -1327,34 +1326,36 @@ def plot_dominant_phase(
13271326 sub = phase_sig [a0 ] > phase_corr
13281327 phase_map [sub ] = a0
13291328 phase_corr [sub ] = phase_sig [a0 ][sub ]
1330- self .phase_corr_total = np .sum (phase_corr ,axis = 0 )
1329+ self .phase_corr_total = np .sum (phase_corr , axis = 0 )
13311330
1332- phase_scale = np .ones ((
1333- self .phase_sig .shape [1 ],
1334- self .phase_sig .shape [2 ],
1335- ))
1331+ phase_scale = np .ones (
1332+ (
1333+ self .phase_sig .shape [1 ],
1334+ self .phase_sig .shape [2 ],
1335+ )
1336+ )
13361337 # if self.single_phase:
1337- # if reliability_range is not None:
1338- # phase_scale *= np.clip(
1339- # (self.phase_reliability - reliability_range[0])
1340- # / (reliability_range[1] - reliability_range[0]),
1341- # 0,
1342- # 1,
1343- # )
1344- # if correlation_range is not None:
1345- # phase_scale *= np.clip(
1346- # (self.phase_corr_total - correlation_range[0])
1347- # / (correlation_range[1] - correlation_range[0]),
1348- # 0,
1349- # 1,
1350- # )
1351-
1352- # phase_scale = np.clip(
1353- # (self.phase_reliability - reliability_range[0])
1354- # / (reliability_range[1] - reliability_range[0]),
1355- # 0,
1356- # 1,
1357- # )
1338+ # if reliability_range is not None:
1339+ # phase_scale *= np.clip(
1340+ # (self.phase_reliability - reliability_range[0])
1341+ # / (reliability_range[1] - reliability_range[0]),
1342+ # 0,
1343+ # 1,
1344+ # )
1345+ # if correlation_range is not None:
1346+ # phase_scale *= np.clip(
1347+ # (self.phase_corr_total - correlation_range[0])
1348+ # / (correlation_range[1] - correlation_range[0]),
1349+ # 0,
1350+ # 1,
1351+ # )
1352+
1353+ # phase_scale = np.clip(
1354+ # (self.phase_reliability - reliability_range[0])
1355+ # / (reliability_range[1] - reliability_range[0]),
1356+ # 0,
1357+ # 1,
1358+ # )
13581359
13591360 # else:
13601361 if not self .single_phase :
@@ -1371,7 +1372,7 @@ def plot_dominant_phase(
13711372
13721373 # normalize the reliability by the intensity of each experimental pattern
13731374 if normalize_exp_intensity :
1374- phase_rel /= ( self .int_total + 1e-12 )
1375+ phase_rel /= self .int_total + 1e-12
13751376
13761377 # phase_scale = np.clip(
13771378 # (phase_rel - reliability_range[0])
0 commit comments