@@ -635,115 +635,288 @@ def test_to_raindepth(dataset, expected):
635635 np .array ([23.01029996 ]),
636636 {
637637 "units" : "dBZ" ,
638+ "transform" : "dB" ,
639+ "accutime" : 5 ,
640+ "threshold" : 23.01029996 ,
641+ "zerovalue" : 18.01029996 ,
642+ },
643+ )
644+ },
645+ attrs = {"precip_var" : "reflectivity" },
646+ ),
647+ ),
648+ (
649+ xr .Dataset (
650+ data_vars = {
651+ "precip_accum" : (
652+ ["x" ],
653+ np .array ([1.0 ]),
654+ {
655+ "units" : "mm" ,
638656 "transform" : None ,
639657 "accutime" : 5 ,
658+ "threshold" : 1.0 ,
659+ "zerovalue" : 1.0 ,
660+ },
661+ )
662+ },
663+ attrs = {"precip_var" : "precip_accum" },
664+ ),
665+ xr .Dataset (
666+ data_vars = {
667+ "reflectivity" : (
668+ ["x" ],
669+ np .array ([40.27719989 ]),
670+ {
671+ "units" : "dBZ" ,
672+ "transform" : "dB" ,
673+ "accutime" : 5 ,
674+ "threshold" : 40.27719989 ,
675+ "zerovalue" : 35.27719989 ,
676+ },
677+ )
678+ },
679+ attrs = {"precip_var" : "reflectivity" },
680+ ),
681+ ),
682+ (
683+ xr .Dataset (
684+ data_vars = {
685+ "precip_intensity" : (
686+ ["x" ],
687+ np .array ([1.0 ]),
688+ {
689+ "units" : "mm/h" ,
690+ "transform" : "dB" ,
691+ "accutime" : 5 ,
692+ "threshold" : 1.0 ,
693+ "zerovalue" : 1.0 ,
694+ },
695+ )
696+ },
697+ attrs = {"precip_var" : "precip_intensity" },
698+ ),
699+ xr .Dataset (
700+ data_vars = {
701+ "reflectivity" : (
702+ ["x" ],
703+ np .array ([24.61029996 ]),
704+ {
705+ "units" : "dBZ" ,
706+ "transform" : "dB" ,
707+ "accutime" : 5 ,
708+ "threshold" : 24.61029996 ,
709+ "zerovalue" : 19.61029996 ,
710+ },
711+ )
712+ },
713+ attrs = {"precip_var" : "reflectivity" },
714+ ),
715+ ),
716+ (
717+ xr .Dataset (
718+ data_vars = {
719+ "precip_accum" : (
720+ ["x" ],
721+ np .array ([1.0 ]),
722+ {
723+ "units" : "mm" ,
724+ "transform" : "dB" ,
725+ "accutime" : 5 ,
726+ "threshold" : 1.0 ,
727+ "zerovalue" : 1.0 ,
728+ },
729+ )
730+ },
731+ attrs = {"precip_var" : "precip_accum" },
732+ ),
733+ xr .Dataset (
734+ data_vars = {
735+ "reflectivity" : (
736+ ["x" ],
737+ np .array ([41.87719989 ]),
738+ {
739+ "units" : "dBZ" ,
740+ "transform" : "dB" ,
741+ "accutime" : 5 ,
742+ "threshold" : 41.87719989 ,
743+ "zerovalue" : 36.87719989 ,
744+ },
745+ )
746+ },
747+ attrs = {"precip_var" : "reflectivity" },
748+ ),
749+ ),
750+ (
751+ xr .Dataset (
752+ data_vars = {
753+ "reflectivity" : (
754+ ["x" ],
755+ np .array ([1.0 ]),
756+ {
757+ "units" : "dBZ" ,
758+ "transform" : "dB" ,
759+ "accutime" : 5 ,
760+ "threshold" : 1.0 ,
761+ "zerovalue" : 1.0 ,
762+ },
763+ )
764+ },
765+ attrs = {"precip_var" : "reflectivity" },
766+ ),
767+ xr .Dataset (
768+ data_vars = {
769+ "reflectivity" : (
770+ ["x" ],
771+ np .array ([1.0 ]),
772+ {
773+ "units" : "dBZ" ,
774+ "transform" : "dB" ,
775+ "accutime" : 5 ,
776+ "threshold" : 1.0 ,
777+ "zerovalue" : - 4.0 ,
778+ },
779+ )
780+ },
781+ attrs = {"precip_var" : "reflectivity" },
782+ ),
783+ ),
784+ (
785+ xr .Dataset (
786+ data_vars = {
787+ "precip_intensity" : (
788+ ["x" ],
789+ np .array ([1.0 ]),
790+ {
791+ "units" : "mm/h" ,
792+ "transform" : "log" ,
793+ "accutime" : 5 ,
794+ "threshold" : 1.0 ,
795+ "zerovalue" : 1.0 ,
796+ },
797+ )
798+ },
799+ attrs = {"precip_var" : "precip_intensity" },
800+ ),
801+ xr .Dataset (
802+ data_vars = {
803+ "reflectivity" : (
804+ ["x" ],
805+ np .array ([29.95901167 ]),
806+ {
807+ "units" : "dBZ" ,
808+ "transform" : "dB" ,
809+ "accutime" : 5 ,
810+ "threshold" : 29.95901167 ,
811+ "zerovalue" : 24.95901167 ,
812+ },
813+ )
814+ },
815+ attrs = {"precip_var" : "reflectivity" },
816+ ),
817+ ),
818+ (
819+ xr .Dataset (
820+ data_vars = {
821+ "precip_accum" : (
822+ ["x" ],
823+ np .array ([1.0 ]),
824+ {
825+ "units" : "mm" ,
826+ "transform" : "log" ,
827+ "accutime" : 5 ,
828+ "threshold" : 1.0 ,
829+ "zerovalue" : 1.0 ,
830+ },
831+ )
832+ },
833+ attrs = {"precip_var" : "precip_accum" },
834+ ),
835+ xr .Dataset (
836+ data_vars = {
837+ "reflectivity" : (
838+ ["x" ],
839+ np .array ([47.2259116 ]),
840+ {
841+ "units" : "dBZ" ,
842+ "transform" : "dB" ,
843+ "accutime" : 5 ,
844+ "threshold" : 47.2259116 ,
845+ "zerovalue" : 42.2259116 ,
846+ },
847+ )
848+ },
849+ attrs = {"precip_var" : "reflectivity" },
850+ ),
851+ ),
852+ (
853+ xr .Dataset (
854+ data_vars = {
855+ "precip_intensity" : (
856+ ["x" ],
857+ np .array ([1.0 ]),
858+ {
859+ "units" : "mm/h" ,
860+ "transform" : "sqrt" ,
861+ "accutime" : 5 ,
862+ "threshold" : 1.0 ,
863+ "zerovalue" : 1.0 ,
864+ },
865+ )
866+ },
867+ attrs = {"precip_var" : "precip_intensity" },
868+ ),
869+ xr .Dataset (
870+ data_vars = {
871+ "reflectivity" : (
872+ ["x" ],
873+ np .array ([23.01029996 ]),
874+ {
875+ "units" : "dBZ" ,
876+ "transform" : "dB" ,
877+ "accutime" : 5 ,
640878 "threshold" : 23.01029996 ,
641- "zerovalue" : 23.01029996 ,
879+ "zerovalue" : 18.01029996 ,
880+ },
881+ )
882+ },
883+ attrs = {"precip_var" : "reflectivity" },
884+ ),
885+ ),
886+ (
887+ xr .Dataset (
888+ data_vars = {
889+ "precip_accum" : (
890+ ["x" ],
891+ np .array ([1.0 ]),
892+ {
893+ "units" : "mm" ,
894+ "transform" : "sqrt" ,
895+ "accutime" : 5 ,
896+ "threshold" : 1.0 ,
897+ "zerovalue" : 1.0 ,
898+ },
899+ )
900+ },
901+ attrs = {"precip_var" : "precip_accum" },
902+ ),
903+ xr .Dataset (
904+ data_vars = {
905+ "reflectivity" : (
906+ ["x" ],
907+ np .array ([40.27719989 ]),
908+ {
909+ "units" : "dBZ" ,
910+ "transform" : "dB" ,
911+ "accutime" : 5 ,
912+ "threshold" : 40.27719989 ,
913+ "zerovalue" : 35.27719989 ,
642914 },
643915 )
644916 },
645917 attrs = {"precip_var" : "reflectivity" },
646918 ),
647919 ),
648- # (
649- # np.array([1]),
650- # {
651- # "accutime": 5,
652- # "transform": None,
653- # "unit": "mm/h",
654- # "threshold": 0,
655- # "zerovalue": 0,
656- # },
657- # np.array([23.01029996]),
658- # ),
659- # (
660- # np.array([1]),
661- # {
662- # "accutime": 5,
663- # "transform": None,
664- # "unit": "mm",
665- # "threshold": 0,
666- # "zerovalue": 0,
667- # },
668- # np.array([40.27719989]),
669- # ),
670- # (
671- # np.array([1]),
672- # {
673- # "accutime": 5,
674- # "transform": "dB",
675- # "unit": "mm/h",
676- # "threshold": 0,
677- # "zerovalue": 0,
678- # },
679- # np.array([24.61029996]),
680- # ),
681- # (
682- # np.array([1]),
683- # {
684- # "accutime": 5,
685- # "transform": "dB",
686- # "unit": "mm",
687- # "threshold": 0,
688- # "zerovalue": 0,
689- # },
690- # np.array([41.87719989]),
691- # ),
692- # (
693- # np.array([1]),
694- # {
695- # "accutime": 5,
696- # "transform": "dB",
697- # "unit": "dBZ",
698- # "threshold": 0,
699- # "zerovalue": 0,
700- # },
701- # np.array([1]),
702- # ),
703- # (
704- # np.array([1]),
705- # {
706- # "accutime": 5,
707- # "transform": "log",
708- # "unit": "mm/h",
709- # "threshold": 0,
710- # "zerovalue": 0,
711- # },
712- # np.array([29.95901167]),
713- # ),
714- # (
715- # np.array([1.0]),
716- # {
717- # "accutime": 5,
718- # "transform": "log",
719- # "unit": "mm",
720- # "threshold": 0,
721- # "zerovalue": 0,
722- # },
723- # np.array([47.2259116]),
724- # ),
725- # (
726- # np.array([1]),
727- # {
728- # "accutime": 5,
729- # "transform": "sqrt",
730- # "unit": "mm/h",
731- # "threshold": 0,
732- # "zerovalue": 0,
733- # },
734- # np.array([23.01029996]),
735- # ),
736- # (
737- # np.array([1.0]),
738- # {
739- # "accutime": 5,
740- # "transform": "sqrt",
741- # "unit": "mm",
742- # "threshold": 0,
743- # "zerovalue": 0,
744- # },
745- # np.array([40.27719989]),
746- # ),
747920]
748921
749922
0 commit comments