@@ -688,10 +688,10 @@ def _declustering(x, y, u, v, decl_grid, min_nr_samples):
688688 """
689689
690690 # make sure these are all numpy vertical arrays
691- x = np .atleast_1d ( np . array (x ).squeeze () )[:, None ]
692- y = np .atleast_1d ( np . array (y ).squeeze () )[:, None ]
693- u = np .atleast_1d ( np . array (u ).squeeze () )[:, None ]
694- v = np .atleast_1d ( np . array (v ).squeeze () )[:, None ]
691+ x = np .array (x ).flatten ( )[:, None ]
692+ y = np .array (y ).flatten ( )[:, None ]
693+ u = np .array (u ).flatten ( )[:, None ]
694+ v = np .array (v ).flatten ( )[:, None ]
695695
696696 # return empty arrays if the number of sparse vectors is < min_nr_samples
697697 if x .size < min_nr_samples :
@@ -785,10 +785,10 @@ def _interpolate_sparse_vectors(
785785 """
786786
787787 # make sure these are vertical arrays
788- x = np .atleast_1d ( np . array (x ).squeeze () )[:, None ]
789- y = np .atleast_1d ( np . array (y ).squeeze () )[:, None ]
790- u = np .atleast_1d ( np . array (u ).squeeze () )[:, None ]
791- v = np .atleast_1d ( np . array (v ).squeeze () )[:, None ]
788+ x = np .array (x ).flatten ( )[:, None ]
789+ y = np .array (y ).flatten ( )[:, None ]
790+ u = np .array (u ).flatten ( )[:, None ]
791+ v = np .array (v ).flatten ( )[:, None ]
792792 points = np .concatenate ((x , y ), axis = 1 )
793793 npoints = points .shape [0 ]
794794
0 commit comments