Skip to content

Commit 77f7709

Browse files
committed
Small doc fixes
1 parent 9bd613f commit 77f7709

File tree

3 files changed

+10
-8
lines changed

3 files changed

+10
-8
lines changed

examples/LK_buffer_mask.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@
9797
# Sparse Lucas-Kanade
9898
# -------------------
9999
#
100-
# By setting the optional argument 'dense=False' in 'x,y,u,v = LK_optflow(.....)',
100+
# By setting the optional argument 'dense=False' in 'xy, uv = LK_optflow(.....)',
101101
# the LK algorithm returns the motion vectors detected by the Lucas-Kanade scheme
102102
# without interpolating them on the grid.
103103
# This allows us to better identify the presence of wrongly detected
@@ -138,8 +138,8 @@
138138
# One way to mitigate this effect of the boundaries is to introduce a slight buffer
139139
# of the no-data mask so that the algorithm will ignore all the portions of the
140140
# radar domain that are nearby no-data areas.
141-
# This is achieved by setting the keyword argument 'buffer_mask = 20' in
142-
# 'x,y,u,v = LK_optflow(.....)'.
141+
# This is achieved by passing the keyword argument 'buffer_mask = 10' within the
142+
# feature detection optional arguments 'fd_kwargs'.
143143

144144
# with buffer
145145
buffer = 10

pysteps/motion/lucaskanade.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@ def dense_lucaskanade(input_images,
148148
Sparse vectors within this declustering scale are averaged together.
149149
If set to less than 2 pixels, the declustering is not perfomed.
150150
See the documentation of
151-
:py:func:`pysteps.cleansing.cleansing.decluster`.
151+
:py:func:`pysteps.utils.cleansing.decluster`.
152152
153153
verbose : bool, optional
154154
If set to True, print some information about the program.
@@ -157,9 +157,11 @@ def dense_lucaskanade(input_images,
157157
-------
158158
159159
out : array_like or tuple
160-
If **dense=True** (the default), it returns the three-dimensional array
161-
(2, m, n) containing the dense x- and y-components of the motion field
162-
in units of [pixels/timestep] as given by the input array input_images.
160+
If **dense=True** (the default), return the advection field having shape
161+
(2, m, n), where out[0, :, :] contains the x-components of the motion
162+
vectors and out[1, :, :] contains the y-components.
163+
The velocities are in units of pixels / timestep, where timestep is the
164+
time difference between the two input images.
163165
Return a zero motion field of shape (2, m, n) when no motion is
164166
detected.
165167

pysteps/utils/interpolate.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ def rbfinterp2d(
7676
7777
The coordinates are normalized before computing the Euclidean norms:
7878
79-
x = (x - min(x)) / max[max(x) - min(x), max(y) - min(y)],
79+
x = (x - min(x)) / max[max(x) - min(x), max(y) - min(y)],\n
8080
y = (y - min(y)) / max[max(x) - min(x), max(y) - min(y)],
8181
8282
where the min and max values are taken as the 2nd and 98th percentiles.

0 commit comments

Comments
 (0)