11import numpy as np
22
3- """The forecast methods in the nowcasts module implement the following interface:
3+ """The methods in the nowcasts module implement the following interface:
44
5- forecast(R, V, num_timesteps, keyword arguments )
5+ forecast(R, V, num_timesteps, **kwargs )
66
77where R (m,n) is the input precipitation field and V (2,m,n) is an array
88containing the x- and y-components of the m*n advection field. num_timesteps
99is an integer specifying the number of time steps to forecast. The interface
1010accepts optional keyword arguments specific to the given method.
1111
12- The output depends on the type of the method. For deterministic methods, the
13- output is a three-dimensional array of shape (num_timesteps,m,n) containing a
14- time series of nowcast precipitation fields. For stochastic methods, the
15- output is a four-dimensional array of shape (num_ensemble_members,num_timesteps,m,n).
12+ The output depends on the type of the method. For deterministic methods, the
13+ output is a three-dimensional array of shape (num_timesteps,m,n) containing a
14+ time series of nowcast precipitation fields. For stochastic methods that produce
15+ an ensemble, the output is a four-dimensional array of shape
16+ (num_ensemble_members,num_timesteps,m,n). The time step of the output is taken
17+ from the inputs.
1618
1719"""
1820
@@ -25,14 +27,14 @@ def get_method(name):
2527 +-------------------+-----------------------------------------------------+
2628 | Name | Description |
2729 +===================+=====================================================+
28- | eulerian | this approach simply keeps the last observation |
29- | | frozen (Eulerian persistence) |
30+ | eulerian | this approach keeps the last observation frozen |
31+ | | (Eulerian persistence) |
3032 +-------------------+-----------------------------------------------------+
3133 | lagrangian or | this approach extrapolates the last observation |
32- | extrapolation | following the motion field (Lagrangian persistence) |
34+ | extrapolation | using the motion field (Lagrangian persistence) |
3335 +-------------------+-----------------------------------------------------+
3436 | steps | implementation of the STEPS stochastic nowcasting |
35- | | method as described in :cite:`Seed2003`, |
37+ | | method described in :cite:`Seed2003`, |
3638 | | :cite:`BPS2006` and :cite:`SPN2013` |
3739 +-------------------+-----------------------------------------------------+
3840
0 commit comments