Problem with lumped model or characteristic of soft pack battery? #2430
Unanswered
RobinBluehub
asked this question in
Q&A
Replies: 1 comment 2 replies
-
You can plot all the heat source terms by doing |
Beta Was this translation helpful? Give feedback.
2 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
When I used the "Mohtat2020" parameter set to study the effect of temperature on battery life, I found that the temperature of the pouch battery dropped too fast during the constant voltage discharge stage, even lower than room temperature 298.15K. Since I have not done any related research on pouch batteries Experiment, this phenomenon confuses me. Thank you for taking the time to respond.

Code:
`import pybamm
import numpy as np
import matplotlib.pyplot as plt
pybamm.set_logging_level("NOTICE")
options = {
"thermal": "lumped",
}
model = pybamm.lithium_ion.DFN(options=options)
parameter_values = pybamm.ParameterValues("Mohtat2020")
param = model.param
esoh_solver = pybamm.lithium_ion.ElectrodeSOHSolver(parameter_values,param)
Vmin = 3.0
Vmax = 4.2
Cn = parameter_values.evaluate(param.n.cap_init)
Cp = parameter_values.evaluate(param.p.cap_init)
n_Li_init = parameter_values.evaluate(param.n_Li_particles_init)
inputs={"V_min": Vmin, "V_max": Vmax,"C_n": Cn, "C_p": Cp, "n_Li": n_Li_init}
esoh_sol = esoh_solver.solve(inputs)
print(f"Initial negative electrode SOC: {esoh_sol['x_100'].data[0]:.3f}")
print(f"Initial positive electrode SOC: {esoh_sol['y_100'].data[0]:.3f}")
c_n_max = parameter_values.evaluate(param.n.prim.c_max)
c_p_max = parameter_values.evaluate(param.p.prim.c_max)
parameter_values.update({
"Initial concentration in negative electrode [mol.m-3]": esoh_sol["x_100"].data[0] * c_n_max,
"Initial concentration in positive electrode [mol.m-3]": esoh_sol["y_100"].data[0] * c_p_max,
})
solver = pybamm.CasadiSolver()
var_pts = {"x_n": 30, "x_s": 30, "x_p": 30, "r_n": 20, "r_p": 20}
experiment=pybamm.Experiment([(
"Discharge at 1C until 2.8V",
"Hold at 2.8V until C/50",
"Charge at 1C until 4.2V",
"Hold at 4.2 V until C/50",
)]*1)
sim = pybamm.Simulation(model,parameter_values=parameter_values,experiment=experiment,solver=solver,var_pts=var_pts)
sol_1=sim.solve(initial_soc=1)
sim.plot(["X-averaged cell temperature [K]","Terminal voltage [V]"])`
Beta Was this translation helpful? Give feedback.
All reactions