Replies: 2 comments
-
With the parameters you changed, there is more cyclable lithium (Q_Li) than capacity in the positive electrode, which is not physical, hence the warning. These two papers provide more information about the model that computes these values. |
Beta Was this translation helpful? Give feedback.
0 replies
-
@YouHyin , were you able to resolve the issue. i am trying to run some degradation studies with LFP chemistry and struggling with parameters set. can you please share the updated code. |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hello, I am currently conducting research to align the discharge curve of the data from the paper ("Severson, K.A., Attia, P.M., Jin, N. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 4, 383–391 (2019). https://doi.org/10.1038/s41560-019-0356-8)" with the discharge curve of PyBaMM.

However, I am encountering a warning and I'm unsure how to resolve it. I would really appreciate it if you could provide some guidance.
Here's my code.
`import pybamm
pybamm.set_logging_level("NOTICE")
parameter_values = pybamm.ParameterValues("Prada2013")
#lithium plating
def stripping_exchange_current_density_OKane2020(c_e, c_Li, T):
"""
Exchange-current density for Li stripping reaction [A.m-2].
References
----------
.. [1] O’Kane, Simon EJ, Ian D. Campbell, Mohamed WJ Marzook, Gregory J. Offer, and
Monica Marinescu. "Physical origin of the differential voltage minimum associated
with lithium plating in Li-ion batteries." Journal of The Electrochemical Society
167, no. 9 (2020): 090540.
Parameters
----------
c_e : :class:
pybamm.Symbol
Electrolyte concentration [mol.m-3]
c_Li : :class:
pybamm.Symbol
Plated lithium concentration [mol.m-3]
T : :class:
pybamm.Symbol
Temperature [K]
Returns
-------
:class:
pybamm.Symbol
Exchange-current density [A.m-2]
"""
def plating_exchange_current_density_OKane2020(c_e, c_Li, T):
"""
Exchange-current density for Li plating reaction [A.m-2].
References
----------
.. [1] O’Kane, Simon EJ, Ian D. Campbell, Mohamed WJ Marzook, Gregory J. Offer, and
Monica Marinescu. "Physical origin of the differential voltage minimum associated
with lithium plating in Li-ion batteries." Journal of The Electrochemical Society
167, no. 9 (2020): 090540.
Parameters
----------
c_e : :class:
pybamm.Symbol
Electrolyte concentration [mol.m-3]
c_Li : :class:
pybamm.Symbol
Plated lithium concentration [mol.m-3]
T : :class:
pybamm.Symbol
Temperature [K]
Returns
-------
:class:
pybamm.Symbol
Exchange-current density [A.m-2]
"""
def SEI_limited_dead_lithium_OKane2022(L_sei):
"""
Decay rate for dead lithium formation [s-1].
References
----------
.. [1] Simon E. J. O'Kane, Weilong Ai, Ganesh Madabattula, Diega Alonso-Alvarez,
Robert Timms, Valentin Sulzer, Jaqueline Sophie Edge, Billy Wu, Gregory J. Offer
and Monica Marinescu. "Lithium-ion battery degradation: how to model it."
Physical Chemistry: Chemical Physics 24, no. 13 (2022): 7909-7922.
Parameters
----------
L_sei : :class:
pybamm.Symbol
Total SEI thickness [m]
Returns
-------
:class:
pybamm.Symbol
Dead lithium decay rate [s-1]
"""
def graphite_LGM50_ocp_Chen2020(sto):
"""
LG M50 Graphite open-circuit potential as a function of stochiometry, fit taken
from [1].
References
----------
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
Electrochemical Society 167 (2020): 080534.
Parameters
----------
sto: :class:
pybamm.Symbol
Electrode stochiometry
Returns
-------
:class:
pybamm.Symbol
Open-circuit potential
"""
def graphite_LGM50_electrolyte_exchange_current_density_Chen2020(
c_e, c_s_surf, c_s_max, T
):
"""
Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in
EC:DMC.
References
----------
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
Electrochemical Society 167 (2020): 080534.
Parameters
----------
c_e : :class:
pybamm.Symbol
Electrolyte concentration [mol.m-3]
c_s_surf : :class:
pybamm.Symbol
Particle concentration [mol.m-3]
c_s_max : :class:
pybamm.Symbol
Maximum particle concentration [mol.m-3]
T : :class:
pybamm.Symbol
Temperature [K]
Returns
-------
:class:
pybamm.Symbol
Exchange-current density [A.m-2]
"""
m_ref = 6.48e-7 # (A/m2)(m3/mol)**1.5 - includes ref concentrations
E_r = 1000000
arrhenius = pybamm.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T))
def LFP_ocp_ashfar2017(sto):
"""
Open-circuit potential for LFP
References
----------
.. [1] Afshar, S., Morris, K., & Khajepour, A. (2017). Efficient electrochemical
model for lithium-ion cells. arXiv preprint arXiv:1709.03970.
Parameters
----------
sto : :class:
pybamm.Symbol
Stochiometry of material (li-fraction)
"""
def LFP_electrolyte_exchange_current_density_kashkooli2017(c_e, c_s_surf, c_s_max, T):
"""
Exchange-current density for Butler-Volmer reactions between LFP and electrolyte
References
----------
.. [1] Kashkooli, A. G., Amirfazli, A., Farhad, S., Lee, D. U., Felicelli, S., Park,
H. W., ... & Chen, Z. (2017). Representative volume element model of lithium-ion
battery electrodes based on X-ray nano-tomography. Journal of Applied
Electrochemistry, 47(3), 281-293.
Parameters
----------
c_e : :class:
pybamm.Symbol
Electrolyte concentration [mol.m-3]
c_s_surf : :class:
pybamm.Symbol
Particle concentration [mol.m-3]
c_s_max : :class:
pybamm.Symbol
Maximum particle concentration [mol.m-3]
T : :class:
pybamm.Symbol
Temperature [K]
Returns
-------
:class:
pybamm.Symbol
Exchange-current density [A.m-2]
"""
parameter_values.update(
{"SEI kinetic rate constant [m.s-1]": 1e-12,
"Initial inner SEI thickness [m]": 0,
"Initial outer SEI thickness [m]": 5e-9,
"EC initial concentration in electrolyte [mol.m-3]": 4000,
"SEI open-circuit potential [V]": 0,
"Lithium plating kinetic rate constant [m.s-1]": 1e-11,
"Ratio of lithium moles to SEI moles": 2.0,
"Inner SEI reaction proportion": 0.5,
"Inner SEI partial molar volume [m3.mol-1]": 9.585e-05,
"Outer SEI partial molar volume [m3.mol-1]": 9.585e-05,
"SEI reaction exchange current density [A.m-2]": 1.5e-07,
"SEI resistivity [Ohm.m]": 200000.0,
"Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22,
"Bulk solvent concentration [mol.m-3]": 2636.0,
"Inner SEI open-circuit potential [V]": 0.1,
"Outer SEI open-circuit potential [V]": 0.8,
"Inner SEI electron conductivity [S.m-1]": 8.95e-14,
"Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20,
"Lithium interstitial reference concentration [mol.m-3]": 15.0,
"Initial inner SEI thickness [m]": 2.5e-09,
"Initial outer SEI thickness [m]": 2.5e-09,
"EC initial concentration in electrolyte [mol.m-3]": 4541.0,
"EC diffusivity [m2.s-1]": 2e-19,
"SEI open-circuit potential [V]": 0.4,
"SEI growth activation energy [J.mol-1]": 100.0,
"SEI growth transfer coefficient": 0.5,
#Lithium plating
"Lithium metal partial molar volume [m3.mol-1]": 1.30E-05,
"Lithium plating kinetic rate constant [m.s-1]": 1E-9,
"Exchange-current density for plating [A.m-2]": plating_exchange_current_density_OKane2020,
"Exchange-current density for stripping [A.m-2]": stripping_exchange_current_density_OKane2020,
"Initial plated lithium concentration [mol.m-3]": 0.00E+00,
"Typical plated lithium concentration [mol.m-3]": 1000,
"Lithium plating transfer coefficient": 0.5,
"Dead lithium decay constant [s-1]": 1e-06,
"Dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022,
#Negative electrode
"Maximum concentration in negative electrode [mol.m-3]": 33133.0,
"Negative electrode diffusivity [m2.s-1]": 10e-14,
"Negative electrode OCP [V]": graphite_LGM50_ocp_Chen2020,
"Negative current collector thickness [m]" : 2e-05,
"Negative electrode exchange-current density [A.m-2]": graphite_LGM50_electrolyte_exchange_current_density_Chen2020,
#Positive electrode
"Maximum concentration in positive electrode [mol.m-3]": 22806.0,
"Positive electrode diffusivity [m2.s-1]": 5.9e-18,
"Positive electrode OCP [V]": LFP_ocp_ashfar2017,
"Positive electrode porosity": 0.12728395,
"Positive electrode active material volume fraction": 0.28485556,
"Positive particle radius [m]": 1e-08,
"Positive electrode density [kg.m-3]": 2341.17,
"Positive electrode exchange-current density [A.m-2]" : LFP_electrolyte_exchange_current_density_kashkooli2017,
s
#cell
"Upper voltage cut-off [V]": 3.6,
#"Cell volume [m3]" : 2.12e-05,
#"Electrode width [m]": 0.103,
#"Electrode height [m]": 0.615,
#"Lower voltage cut-off [V]": 2.0,
"Nominal cell capacity [A.h]": 1.1,
"Initial concentration in negative electrode [mol.m-3]": 18831.45783,
"Initial concentration in positive electrode [mol.m-3]": 3300.3766672,
},
check_already_exists=False,
)
Calculate stoichiometries at 100% SOC
parameter_values.set_initial_stoichiometries(1);
N_cycles = 15
options = {
"SEI": "ec reaction limited",
"lithium plating": "irreversible", }
spme = pybamm.lithium_ion.SPMe(options)
#simulation
def pybamm_simulation_lfp(x,k): #x : parameter values, k : cycle, a:applied current
parameter_values.update(
{
"Negative electrode diffusivity [m2.s-1]": x[0],
"Positive electrode diffusivity [m2.s-1]": x[1],
"Maximum concentration in negative electrode [mol.m-3]": x[2],
"Maximum concentration in positive electrode [mol.m-3]": x[3],
"Electrode width [m]": x[4],
"Positive electrode porosity": x[5],
"Negative electrode porosity": x[6],
`
Thank you.
Beta Was this translation helpful? Give feedback.
All reactions