|
| 1 | +.. hazmat:: |
| 2 | + |
| 3 | +Cloud KMS and HSM Asymmetric Keys |
| 4 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 5 | + |
| 6 | +.. testsetup:: |
| 7 | + |
| 8 | + """ |
| 9 | + We need to have this exist so the doctest below allows us to |
| 10 | + test that we're satisfying the base class requirements. |
| 11 | + """ |
| 12 | + class Response: |
| 13 | + def __init__(self, signature): |
| 14 | + self.signature = signature |
| 15 | + |
| 16 | + class SomeCloudClient: |
| 17 | + def __init__(self, creds): |
| 18 | + pass |
| 19 | + |
| 20 | + def sign(self, key_id, algorithm, message): |
| 21 | + return Response(b"\x00" * (self.key_size(key_id) // 8)) |
| 22 | + |
| 23 | + def key_size(self, key_id): |
| 24 | + return 2048 |
| 25 | + |
| 26 | +``cryptography`` provides a set of abstract base classes for asymmetric keys |
| 27 | +that can be used to integrate with cloud key management services, HSMs, and other ways of managing keys that are not in-memory. |
| 28 | +A minimal example with a hypothetical cloud key management service for an RSA |
| 29 | +key is provided below, but this works for all asymmetric types. You must provide |
| 30 | +all methods of the base class, but many methods can be stubs with no implementation |
| 31 | +if you only need a subset of functionality. |
| 32 | + |
| 33 | +.. doctest:: |
| 34 | + |
| 35 | + >>> import typing |
| 36 | + >>> from cryptography.hazmat.primitives.asymmetric import rsa, utils |
| 37 | + >>> from cryptography.hazmat.primitives import hashes, serialization |
| 38 | + >>> from cryptography.hazmat.primitives.asymmetric.padding import AsymmetricPadding, PKCS1v15 |
| 39 | + >>> |
| 40 | + >>> class CloudRSAPrivateKey(rsa.RSAPrivateKey): |
| 41 | + ... def __init__(self, creds, key_id): |
| 42 | + ... self._creds = creds |
| 43 | + ... self._cloud_client = SomeCloudClient(creds) |
| 44 | + ... self._key_id = key_id |
| 45 | + ... |
| 46 | + ... def sign( |
| 47 | + ... self, |
| 48 | + ... data: bytes, |
| 49 | + ... padding: AsymmetricPadding, |
| 50 | + ... algorithm: typing.Union[utils.Prehashed, hashes.HashAlgorithm], |
| 51 | + ... ) -> bytes: |
| 52 | + ... """ |
| 53 | + ... Signs data using the cloud KMS. You'll need to define a mapping |
| 54 | + ... between the way your cloud provider represents padding and algorithms |
| 55 | + ... and the way cryptography represents them. |
| 56 | + ... """ |
| 57 | + ... |
| 58 | + ... # Hash the data if necessary |
| 59 | + ... if not isinstance(algorithm, utils.Prehashed): |
| 60 | + ... h = hashes.Hash(algorithm) |
| 61 | + ... h.update(data) |
| 62 | + ... digest = h.finalize() |
| 63 | + ... hash_alg = algorithm |
| 64 | + ... else: |
| 65 | + ... digest = data |
| 66 | + ... hash_alg = algorithm._algorithm |
| 67 | + ... # Map cryptography padding/algorithm to KMS signing algorithm |
| 68 | + ... kms_algorithm = self._map_to_kms_algorithm(padding, hash_alg) |
| 69 | + ... |
| 70 | + ... # Call KMS API to sign the digest |
| 71 | + ... response = self._cloud_client.sign( |
| 72 | + ... key_id=self._key_id, |
| 73 | + ... algorithm=kms_algorithm, |
| 74 | + ... message=digest, |
| 75 | + ... ) |
| 76 | + ... |
| 77 | + ... return response.signature |
| 78 | + ... |
| 79 | + ... def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes: |
| 80 | + ... raise NotImplementedError() |
| 81 | + ... |
| 82 | + ... def _map_to_kms_algorithm( |
| 83 | + ... self, |
| 84 | + ... padding: AsymmetricPadding, |
| 85 | + ... algorithm: hashes.HashAlgorithm |
| 86 | + ... ) -> bytes: |
| 87 | + ... """ |
| 88 | + ... Maps the cryptography padding and algorithm to the corresponding KMS signing algorithm. |
| 89 | + ... This is specific to your implementation. |
| 90 | + ... """ |
| 91 | + ... if isinstance(padding, PKCS1v15) and isinstance(algorithm, hashes.SHA256): |
| 92 | + ... return b"RSA_PKCS1_V1_5_SHA_256" |
| 93 | + ... else: |
| 94 | + ... raise NotImplementedError() |
| 95 | + ... |
| 96 | + ... @property |
| 97 | + ... def key_size(self) -> int: |
| 98 | + ... return self._cloud_client.key_size(self._key_id) |
| 99 | + ... |
| 100 | + ... def public_key(self) -> rsa.RSAPublicKey: |
| 101 | + ... raise NotImplementedError() |
| 102 | + ... |
| 103 | + ... def private_numbers(self) -> rsa.RSAPrivateNumbers: |
| 104 | + ... """ |
| 105 | + ... This method typically can't be implemented for cloud KMS keys |
| 106 | + ... as the private key material is not accessible. |
| 107 | + ... """ |
| 108 | + ... raise NotImplementedError() |
| 109 | + ... |
| 110 | + ... def private_bytes( |
| 111 | + ... self, |
| 112 | + ... encoding: serialization.Encoding, |
| 113 | + ... format: serialization.PrivateFormat, |
| 114 | + ... encryption_algorithm: serialization.KeySerializationEncryption, |
| 115 | + ... ) -> bytes: |
| 116 | + ... """ |
| 117 | + ... This method typically can't be implemented for cloud KMS keys |
| 118 | + ... as the private key material is not accessible. |
| 119 | + ... """ |
| 120 | + ... raise NotImplementedError() |
| 121 | + ... |
| 122 | + ... def __copy__(self) -> "CloudRSAPrivateKey": |
| 123 | + ... return self |
| 124 | + ... |
| 125 | + >>> cloud_private_key = CloudRSAPrivateKey("creds", "key_id") |
| 126 | + >>> sig = cloud_private_key.sign(b"message", PKCS1v15(), hashes.SHA256()) |
| 127 | + >>> isinstance(sig, bytes) |
| 128 | + True |
| 129 | + |
| 130 | +This key can then be used with other parts of ``cryptography``, such as the X.509 APIs. |
| 131 | +In the example below we assume that we are using our cloud private key to sign |
| 132 | +a leaf certificate (not self-signed). |
| 133 | + |
| 134 | +.. doctest:: |
| 135 | + |
| 136 | + >>> from cryptography import x509 |
| 137 | + >>> from cryptography.x509.oid import NameOID |
| 138 | + >>> import datetime |
| 139 | + >>> one_day = datetime.timedelta(1, 0, 0) |
| 140 | + >>> leaf_private_key = rsa.generate_private_key( |
| 141 | + ... public_exponent=65537, |
| 142 | + ... key_size=2048, |
| 143 | + ... ) |
| 144 | + >>> leaf_public_key = leaf_private_key.public_key() |
| 145 | + >>> builder = x509.CertificateBuilder() |
| 146 | + >>> builder = builder.subject_name(x509.Name([ |
| 147 | + ... x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io'), |
| 148 | + ... ])) |
| 149 | + >>> builder = builder.issuer_name(x509.Name([ |
| 150 | + ... x509.NameAttribute(NameOID.COMMON_NAME, 'My Cloud CA'), |
| 151 | + ... ])) |
| 152 | + >>> builder = builder.not_valid_before(datetime.datetime.today() - one_day) |
| 153 | + >>> builder = builder.not_valid_after(datetime.datetime.today() + (one_day * 30)) |
| 154 | + >>> builder = builder.serial_number(x509.random_serial_number()) |
| 155 | + >>> builder = builder.public_key(leaf_public_key) |
| 156 | + >>> builder = builder.add_extension( |
| 157 | + ... x509.SubjectAlternativeName( |
| 158 | + ... [x509.DNSName('cryptography.io')] |
| 159 | + ... ), |
| 160 | + ... critical=False |
| 161 | + ... ) |
| 162 | + >>> builder = builder.add_extension( |
| 163 | + ... x509.BasicConstraints(ca=False, path_length=None), critical=True, |
| 164 | + ... ) |
| 165 | + >>> certificate = builder.sign( |
| 166 | + ... private_key=cloud_private_key, algorithm=hashes.SHA256(), |
| 167 | + ... ) |
| 168 | + >>> isinstance(certificate, x509.Certificate) |
| 169 | + True |
0 commit comments