|
| 1 | +"""Example message history processors for automatic cache point insertion. |
| 2 | +
|
| 3 | +This module demonstrates how to use message history processors to automatically |
| 4 | +insert CachePoint objects for prompt caching optimization. |
| 5 | +""" |
| 6 | + |
| 7 | +from typing import Callable |
| 8 | + |
| 9 | +from pydantic_ai.messages import ( |
| 10 | + CachePoint, |
| 11 | + ModelMessage, |
| 12 | + ModelRequest, |
| 13 | + SystemPromptPart, |
| 14 | + UserPromptPart, |
| 15 | +) |
| 16 | + |
| 17 | + |
| 18 | +def cache_system_prompt_processor(messages: list[ModelMessage]) -> list[ModelMessage]: |
| 19 | + """Add cache point after the last system prompt. |
| 20 | +
|
| 21 | + This processor finds the last system prompt in the message history and |
| 22 | + adds a cache point to the beginning of the next user message, effectively |
| 23 | + caching all system prompts. |
| 24 | +
|
| 25 | + Args: |
| 26 | + messages: List of model messages to process |
| 27 | +
|
| 28 | + Returns: |
| 29 | + Modified list of messages with cache points added |
| 30 | + """ |
| 31 | + result = [] |
| 32 | + last_system_idx = -1 |
| 33 | + |
| 34 | + for i, message in enumerate(messages): |
| 35 | + if isinstance(message, ModelRequest): |
| 36 | + for part in message.parts: |
| 37 | + if isinstance(part, SystemPromptPart): |
| 38 | + last_system_idx = i |
| 39 | + result.append(message) |
| 40 | + |
| 41 | + # Insert cache point after last system prompt |
| 42 | + if last_system_idx >= 0 and last_system_idx < len(result) - 1: |
| 43 | + next_message = result[last_system_idx + 1] |
| 44 | + if isinstance(next_message, ModelRequest): |
| 45 | + for part in next_message.parts: |
| 46 | + if isinstance(part, UserPromptPart) and isinstance(part.content, list): |
| 47 | + part.content.insert(0, CachePoint()) |
| 48 | + break |
| 49 | + elif isinstance(part, UserPromptPart) and isinstance(part.content, str): |
| 50 | + # Convert string content to list and add cache point |
| 51 | + part.content = [CachePoint(), part.content] |
| 52 | + break |
| 53 | + |
| 54 | + return result |
| 55 | + |
| 56 | + |
| 57 | +def cache_long_context_processor( |
| 58 | + min_tokens: int = 1024, |
| 59 | +) -> Callable[[list[ModelMessage]], list[ModelMessage]]: |
| 60 | + """Add cache points before content that likely exceeds token threshold. |
| 61 | +
|
| 62 | + This is a simplified example that estimates content length. In a real |
| 63 | + implementation, you would want to use a proper tokenizer for accurate counts. |
| 64 | +
|
| 65 | + Args: |
| 66 | + min_tokens: Minimum estimated tokens before adding a cache point |
| 67 | +
|
| 68 | + Returns: |
| 69 | + A processor function that adds cache points for long content |
| 70 | + """ |
| 71 | + |
| 72 | + def processor(messages: list[ModelMessage]) -> list[ModelMessage]: |
| 73 | + result = [] |
| 74 | + |
| 75 | + for message in messages: |
| 76 | + if isinstance(message, ModelRequest): |
| 77 | + for part in message.parts: |
| 78 | + if isinstance(part, UserPromptPart): |
| 79 | + if isinstance(part.content, str): |
| 80 | + # Simple estimation: ~4 characters per token |
| 81 | + if len(part.content) > min_tokens * 4: |
| 82 | + part.content = [CachePoint(), part.content] |
| 83 | + elif isinstance(part.content, list): |
| 84 | + # Look for large text blocks |
| 85 | + for i, item in enumerate(part.content): |
| 86 | + if isinstance(item, str) and len(item) > min_tokens * 4: |
| 87 | + # Insert cache point before large text |
| 88 | + part.content.insert(i, CachePoint()) |
| 89 | + break |
| 90 | + result.append(message) |
| 91 | + |
| 92 | + return result |
| 93 | + |
| 94 | + return processor |
| 95 | + |
| 96 | + |
| 97 | +def cache_document_context_processor( |
| 98 | + messages: list[ModelMessage], |
| 99 | +) -> list[ModelMessage]: |
| 100 | + """Add cache points after document content. |
| 101 | +
|
| 102 | + This processor adds cache points after any document or binary content |
| 103 | + to cache large context documents. |
| 104 | +
|
| 105 | + Args: |
| 106 | + messages: List of model messages to process |
| 107 | +
|
| 108 | + Returns: |
| 109 | + Modified list of messages with cache points added |
| 110 | + """ |
| 111 | + result = [] |
| 112 | + |
| 113 | + for message in messages: |
| 114 | + if isinstance(message, ModelRequest): |
| 115 | + for part in message.parts: |
| 116 | + if isinstance(part, UserPromptPart) and isinstance(part.content, list): |
| 117 | + new_content = [] |
| 118 | + for item in part.content: |
| 119 | + new_content.append(item) |
| 120 | + # Add cache point after document/binary content |
| 121 | + if hasattr(item, 'media_type') or hasattr(item, 'data'): |
| 122 | + new_content.append(CachePoint()) |
| 123 | + part.content = new_content |
| 124 | + result.append(message) |
| 125 | + |
| 126 | + return result |
| 127 | + |
| 128 | + |
| 129 | +def cache_conversation_turns_processor( |
| 130 | + messages: list[ModelMessage], |
| 131 | +) -> list[ModelMessage]: |
| 132 | + """Add cache points at regular conversation intervals. |
| 133 | +
|
| 134 | + This processor adds cache points every few conversation turns to cache |
| 135 | + conversational context progressively. |
| 136 | +
|
| 137 | + Args: |
| 138 | + messages: List of model messages to process |
| 139 | +
|
| 140 | + Returns: |
| 141 | + Modified list of messages with cache points added |
| 142 | + """ |
| 143 | + result = [] |
| 144 | + turn_count = 0 |
| 145 | + |
| 146 | + for message in messages: |
| 147 | + if isinstance(message, ModelRequest): |
| 148 | + for part in message.parts: |
| 149 | + if isinstance(part, UserPromptPart): |
| 150 | + turn_count += 1 |
| 151 | + # Add cache point every 3 turns |
| 152 | + if turn_count % 3 == 0: |
| 153 | + if isinstance(part.content, str): |
| 154 | + part.content = [CachePoint(), part.content] |
| 155 | + elif isinstance(part.content, list): |
| 156 | + part.content.insert(0, CachePoint()) |
| 157 | + result.append(message) |
| 158 | + |
| 159 | + return result |
| 160 | + |
| 161 | + |
| 162 | +def multi_level_cache_processor(messages: list[ModelMessage]) -> list[ModelMessage]: |
| 163 | + """Example of multiple cache points for hierarchical caching. |
| 164 | +
|
| 165 | + This processor demonstrates adding multiple cache points at different levels: |
| 166 | + - After system prompts |
| 167 | + - After large context |
| 168 | + - At conversation intervals |
| 169 | +
|
| 170 | + Args: |
| 171 | + messages: List of model messages to process |
| 172 | +
|
| 173 | + Returns: |
| 174 | + Modified list of messages with cache points added |
| 175 | + """ |
| 176 | + # Apply multiple processors in sequence |
| 177 | + processed = cache_system_prompt_processor(messages) |
| 178 | + processed = cache_long_context_processor(512)(processed) |
| 179 | + processed = cache_conversation_turns_processor(processed) |
| 180 | + |
| 181 | + return processed |
0 commit comments