|
| 1 | +from __future__ import annotations |
| 2 | +from typing import Callable |
| 3 | +from collections.abc import Iterator, Sequence |
| 4 | +from contextlib import contextmanager |
| 5 | +from typing import Any, Never, overload |
| 6 | +from typing_extensions import Generic |
| 7 | +from dataclasses import dataclass |
| 8 | + |
| 9 | +from pydantic_ai import models |
| 10 | +from pydantic_ai._run_context import AgentDepsT |
| 11 | +from pydantic_ai.agent.abstract import AbstractAgent, EventStreamHandler, RunOutputDataT |
| 12 | +from pydantic_ai.agent.wrapper import WrapperAgent |
| 13 | +from pydantic_ai.messages import ModelMessage, UserContent |
| 14 | +from pydantic_ai.models import Model |
| 15 | +from pydantic_ai.output import OutputDataT, OutputSpec |
| 16 | +from pydantic_ai.run import AgentRunResult |
| 17 | +from pydantic_ai.settings import ModelSettings |
| 18 | +from pydantic_ai.tools import DeferredToolResults |
| 19 | +from pydantic_ai.toolsets.abstract import AbstractToolset |
| 20 | +from pydantic_ai.toolsets.function import FunctionToolset |
| 21 | +from pydantic_ai.usage import RunUsage, UsageLimits |
| 22 | + |
| 23 | +from restate import Context, TerminalError |
| 24 | + |
| 25 | +from ._model import RestateModelWrapper |
| 26 | +from ._toolset import RestateContextRunToolSet |
| 27 | + |
| 28 | +class RestateAgentProvider(Generic[AgentDepsT, OutputDataT]): |
| 29 | + |
| 30 | + def __init__(self, |
| 31 | + wrapped: AbstractAgent[AgentDepsT, OutputDataT], |
| 32 | + *, |
| 33 | + max_attempts: int = 3): |
| 34 | + if not isinstance(wrapped.model, Model): |
| 35 | + raise TerminalError( |
| 36 | + 'An agent needs to have a `model` in order to be used with Restate, it cannot be set at agent run time.' |
| 37 | + ) |
| 38 | + # here we collect all the configuration that will be passed to the RestateAgent |
| 39 | + # the actual context will be provided at runtime. |
| 40 | + self.wrapped = wrapped |
| 41 | + self.max_attempts = max_attempts |
| 42 | + |
| 43 | + def create_agent(self, context: Context) -> AbstractAgent[AgentDepsT, OutputDataT]: |
| 44 | + """ |
| 45 | + Create an agent instance with the given Restate context. |
| 46 | + |
| 47 | + Use this method to create an agent that is tied to a specific Restate context. |
| 48 | + With this agent, all operations will be executed within the provided context, |
| 49 | + enabling features like retries and durable steps. |
| 50 | + Note that the agent will automatically wrap tool calls with restate's `ctx.run()`. |
| 51 | + |
| 52 | + Example: |
| 53 | + ```python |
| 54 | + ... |
| 55 | + agent_provider = RestateAgentProvider(weather_agent) |
| 56 | + |
| 57 | + weather = restate.Service('weather') |
| 58 | +
|
| 59 | + @weather.handler() |
| 60 | + async def get_weather(ctx: restate.Context, city: str): |
| 61 | + agent = agent_provider.create_agent_from_context(ctx) |
| 62 | + result = await agent.run(f'What is the weather in {city}?') |
| 63 | + return result.output |
| 64 | + ... |
| 65 | + ``` |
| 66 | + |
| 67 | + Args: |
| 68 | + context: The Restate context to use for the agent. |
| 69 | + auto_wrap_tool_calls: Whether to automatically wrap tool calls with restate's ctx.run() (durable step), True by default. |
| 70 | + Returns: |
| 71 | + A RestateAgent instance that uses the provided context for its operations. |
| 72 | + """ |
| 73 | + get_context = lambda _unused: context |
| 74 | + builder = self |
| 75 | + return RestateAgent(builder=builder, get_context=get_context, auto_wrap_tools=True) |
| 76 | + |
| 77 | + def create_agent_with_advanced_tools(self, get_context: Callable[[AgentDepsT], Context]) -> AbstractAgent[AgentDepsT, OutputDataT]: |
| 78 | + """ |
| 79 | + Create an agent instance that is able to obtain Restate context from its dependencies. |
| 80 | + |
| 81 | + Use this method, if you are planning to use restate's context inside the tools (for rpc, timers, multi step tools etc.) |
| 82 | + To obtain a context inside a tool you can add a dependency that has a `restate_context` attribute, and provide a `get_context` extractor |
| 83 | + function that extracts the context from the dependencies at runtime. |
| 84 | +
|
| 85 | + Note: that the agent will NOT automatically wrap tool calls with restate's `ctx.run()` |
| 86 | + since the tools may use the context in different ways. |
| 87 | + |
| 88 | + Example: |
| 89 | + ```python |
| 90 | + ... |
| 91 | +
|
| 92 | + @dataclass |
| 93 | + WeatherDeps: |
| 94 | + ... |
| 95 | + restate_context: Context |
| 96 | + |
| 97 | + weather_agent = Agent(..., deps_type=WeatherDeps, ...) |
| 98 | + |
| 99 | + @weather_agent.tool |
| 100 | + async def get_lat_lng(ctx: RunContext[WeatherDeps], location_description: str) -> LatLng: |
| 101 | + restate_context = ctx.deps.restate_context |
| 102 | + lat = await restate_context.run(...) # <---- note the direct usage of the restate context |
| 103 | + lng = await restate_context.run(...) |
| 104 | + return LatLng(lat, lng) |
| 105 | +
|
| 106 | + agent = RestateAgentProvider(weather_agent).create_agent_from_deps(lambda deps: deps.restate_context) |
| 107 | + |
| 108 | + weather = restate.Service('weather') |
| 109 | +
|
| 110 | + @weather.handler() |
| 111 | + async def get_weather(ctx: restate.Context, city: str): |
| 112 | + result = await agent.run(f'What is the weather in {city}?', deps=WeatherDeps(restate_context=ctx, ...)) |
| 113 | + return result.output |
| 114 | + ... |
| 115 | + ``` |
| 116 | + |
| 117 | + Args: |
| 118 | + get_context: A callable that extracts the Restate context from the agent's dependencies. |
| 119 | + Returns: |
| 120 | + A RestateAgent instance that uses the provided context extractor to obtain the Restate context at runtime. |
| 121 | + |
| 122 | + """ |
| 123 | + builder = self |
| 124 | + return RestateAgent(builder=builder, get_context=get_context, auto_wrap_tools=False) |
| 125 | + |
| 126 | + |
| 127 | +class RestateAgent(WrapperAgent[AgentDepsT, OutputDataT]): |
| 128 | + """An agent that integrates with the Restate framework for resilient applications.""" |
| 129 | + def __init__( |
| 130 | + self, |
| 131 | + builder: RestateAgentProvider[AgentDepsT, OutputDataT], |
| 132 | + get_context: Callable[[AgentDepsT], Context], |
| 133 | + auto_wrap_tools: bool, |
| 134 | + ): |
| 135 | + super().__init__(builder.wrapped) |
| 136 | + self._builder = builder |
| 137 | + self._get_context = get_context |
| 138 | + self._auto_wrap_tools = auto_wrap_tools |
| 139 | + |
| 140 | + @contextmanager |
| 141 | + def _restate_overrides(self, context: Context) -> Iterator[None]: |
| 142 | + model = RestateModelWrapper(self._builder.wrapped.model, context, max_attempts=self._builder.max_attempts) |
| 143 | + |
| 144 | + def set_context(toolset: AbstractToolset[AgentDepsT]) -> AbstractToolset[AgentDepsT]: |
| 145 | + """Set the Restate context for the toolset, wrapping tools if needed.""" |
| 146 | + if isinstance(toolset, FunctionToolset) and self._auto_wrap_tools: |
| 147 | + return RestateContextRunToolSet(toolset, context) |
| 148 | + try: |
| 149 | + from pydantic_ai.mcp import MCPServer |
| 150 | + from ._toolset import RestateMCPServer |
| 151 | + except ImportError: |
| 152 | + pass |
| 153 | + else: |
| 154 | + if isinstance(toolset, MCPServer): |
| 155 | + return RestateMCPServer(toolset, context) |
| 156 | + |
| 157 | + return toolset |
| 158 | + |
| 159 | + toolsets = [toolset.visit_and_replace(set_context) for toolset in self._builder.wrapped.toolsets] |
| 160 | + |
| 161 | + with ( |
| 162 | + super().override(model=model, toolsets=toolsets, tools=[]), |
| 163 | + self.sequential_tool_calls(), |
| 164 | + ): |
| 165 | + yield |
| 166 | + |
| 167 | + @overload |
| 168 | + async def run( |
| 169 | + self, |
| 170 | + user_prompt: str | Sequence[UserContent] | None = None, |
| 171 | + *, |
| 172 | + output_type: None = None, |
| 173 | + message_history: list[ModelMessage] | None = None, |
| 174 | + deferred_tool_results: DeferredToolResults | None = None, |
| 175 | + model: models.Model | models.KnownModelName | str | None = None, |
| 176 | + deps: AgentDepsT = None, |
| 177 | + model_settings: ModelSettings | None = None, |
| 178 | + usage_limits: UsageLimits | None = None, |
| 179 | + usage: RunUsage | None = None, |
| 180 | + infer_name: bool = True, |
| 181 | + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, |
| 182 | + event_stream_handler: EventStreamHandler[AgentDepsT] | None = None, |
| 183 | + ) -> AgentRunResult[OutputDataT]: ... |
| 184 | + |
| 185 | + @overload |
| 186 | + async def run( |
| 187 | + self, |
| 188 | + user_prompt: str | Sequence[UserContent] | None = None, |
| 189 | + *, |
| 190 | + output_type: OutputSpec[RunOutputDataT], |
| 191 | + message_history: list[ModelMessage] | None = None, |
| 192 | + deferred_tool_results: DeferredToolResults | None = None, |
| 193 | + model: models.Model | models.KnownModelName | str | None = None, |
| 194 | + deps: AgentDepsT = None, |
| 195 | + model_settings: ModelSettings | None = None, |
| 196 | + usage_limits: UsageLimits | None = None, |
| 197 | + usage: RunUsage | None = None, |
| 198 | + infer_name: bool = True, |
| 199 | + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, |
| 200 | + event_stream_handler: EventStreamHandler[AgentDepsT] | None = None, |
| 201 | + ) -> AgentRunResult[RunOutputDataT]: ... |
| 202 | + |
| 203 | + async def run( |
| 204 | + self, |
| 205 | + user_prompt: str | Sequence[UserContent] | None = None, |
| 206 | + *, |
| 207 | + output_type: OutputSpec[RunOutputDataT] | None = None, |
| 208 | + message_history: list[ModelMessage] | None = None, |
| 209 | + deferred_tool_results: DeferredToolResults | None = None, |
| 210 | + model: models.Model | models.KnownModelName | str | None = None, |
| 211 | + deps: AgentDepsT = None, |
| 212 | + model_settings: ModelSettings | None = None, |
| 213 | + usage_limits: UsageLimits | None = None, |
| 214 | + usage: RunUsage | None = None, |
| 215 | + infer_name: bool = True, |
| 216 | + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, |
| 217 | + event_stream_handler: EventStreamHandler[AgentDepsT] | None = None, |
| 218 | + **_deprecated_kwargs: Never, |
| 219 | + ) -> AgentRunResult[Any]: |
| 220 | + """Run the agent with a user prompt in async mode. |
| 221 | +
|
| 222 | + This method builds an internal agent graph (using system prompts, tools and result schemas) and then |
| 223 | + runs the graph to completion. The result of the run is returned. |
| 224 | +
|
| 225 | + Example: |
| 226 | + ```python |
| 227 | + from pydantic_ai import Agent |
| 228 | +
|
| 229 | + agent = Agent('openai:gpt-4o') |
| 230 | +
|
| 231 | + async def main(): |
| 232 | + agent_run = await agent.run('What is the capital of France?') |
| 233 | + print(agent_run.output) |
| 234 | + #> The capital of France is Paris. |
| 235 | + ``` |
| 236 | +
|
| 237 | + Args: |
| 238 | + user_prompt: User input to start/continue the conversation. |
| 239 | + output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no |
| 240 | + output validators since output validators would expect an argument that matches the agent's output type. |
| 241 | + message_history: History of the conversation so far. |
| 242 | + deferred_tool_results: Optional results for deferred tool calls in the message history. |
| 243 | + model: Optional model to use for this run, required if `model` was not set when creating the agent. |
| 244 | + deps: Optional dependencies to use for this run. |
| 245 | + model_settings: Optional settings to use for this model's request. |
| 246 | + usage_limits: Optional limits on model request count or token usage. |
| 247 | + usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. |
| 248 | + infer_name: Whether to try to infer the agent name from the call frame if it's not set. |
| 249 | + toolsets: Optional additional toolsets for this run. |
| 250 | + event_stream_handler: Optional event stream handler to use for this run. |
| 251 | +
|
| 252 | + Returns: |
| 253 | + The result of the run. |
| 254 | + """ |
| 255 | + if model is not None: |
| 256 | + raise TerminalError('An agent needs to have a `model` in order to be used with Restate, it cannot be set at agent run time.') |
| 257 | + context = self._get_context(deps) |
| 258 | + with self._restate_overrides(context): |
| 259 | + return await super(WrapperAgent, self).run( |
| 260 | + user_prompt=user_prompt, |
| 261 | + output_type=output_type, |
| 262 | + message_history=message_history, |
| 263 | + deferred_tool_results=deferred_tool_results, |
| 264 | + model=model, |
| 265 | + deps=deps, |
| 266 | + model_settings=model_settings, |
| 267 | + usage_limits=usage_limits, |
| 268 | + usage=usage, |
| 269 | + infer_name=infer_name, |
| 270 | + toolsets=toolsets, |
| 271 | + event_stream_handler=event_stream_handler, |
| 272 | + ) |
| 273 | + |
| 274 | + |
| 275 | + |
| 276 | + |
| 277 | + |
| 278 | + |
0 commit comments