66
77from datetime import timedelta
88
9- from mcp_run_python import code_sandbox
10- from pydantic_ai import Agent , FilteredToolset , ModelSettings , RunContext
11- from pydantic_ai .durable_exec .temporal import TemporalAgent
12- from pydantic_ai .mcp import MCPServerStdio
13- from pydantic_ai .models .anthropic import AnthropicModel
14- from pydantic_ai .providers .anthropic import AnthropicProvider
159from temporalio .common import RetryPolicy
1610from temporalio .workflow import ActivityConfig
1711
1812from datamodels import AgentDependencies
13+ from pydantic_ai import Agent , FilteredToolset , ModelSettings
14+ from pydantic_ai .durable_exec .temporal import TemporalAgent
15+ from pydantic_ai .mcp import MCPServerStdio
16+ from pydantic_ai .models .anthropic import AnthropicModel
17+ from pydantic_ai .providers .anthropic import AnthropicProvider
1918
2019
2120async def get_mcp_toolsets () -> dict [str , FilteredToolset ]:
@@ -78,7 +77,6 @@ async def build_agent(stream_handler=None, **env_vars):
7877 """
7978 system_prompt = """
8079 You are an expert financial analyst that knows how to search for financial data on the web.
81- You also have a Data Analyst background, mastering well how to use pandas for tabular operations.
8280 """
8381 agent_name = 'YahooFinanceSearchAgent'
8482
@@ -92,13 +90,6 @@ async def build_agent(stream_handler=None, **env_vars):
9290 deps_type = AgentDependencies ,
9391 )
9492
95- @agent .tool (name = 'run_python_code' )
96- async def run_python_code (ctx : RunContext [None ], code : str ) -> str :
97- """Execute Python code in a sandboxed environment with pandas and numpy available."""
98- async with code_sandbox (dependencies = ['pandas' , 'numpy' ]) as sandbox :
99- result = await sandbox .eval (code )
100- return result
101-
10293 temporal_agent = TemporalAgent (
10394 wrapped = agent ,
10495 model_activity_config = ActivityConfig (
0 commit comments