|
| 1 | +from collections.abc import AsyncIterable, AsyncIterator |
| 2 | +from contextlib import asynccontextmanager |
| 3 | +from dataclasses import dataclass, field |
| 4 | +from datetime import datetime, timezone |
| 5 | +from typing import Any, Literal |
| 6 | + |
| 7 | +from .. import UnexpectedModelBehavior, _utils |
| 8 | +from .._run_context import RunContext |
| 9 | +from ..messages import ( |
| 10 | + ModelMessage, |
| 11 | + ModelResponse, |
| 12 | + ModelResponseStreamEvent, |
| 13 | + TextPart, |
| 14 | +) |
| 15 | +from ..profiles import ModelProfileSpec |
| 16 | +from ..providers import Provider, infer_provider |
| 17 | +from ..settings import ModelSettings |
| 18 | +from . import ( |
| 19 | + Model, |
| 20 | + ModelRequestParameters, |
| 21 | + StreamedResponse, |
| 22 | +) |
| 23 | + |
| 24 | +try: |
| 25 | + from outlines.inputs import Chat |
| 26 | + from outlines.models.base import AsyncModel as OutlinesAsyncBaseModel, Model as OutlinesBaseModel |
| 27 | + from outlines.models.llamacpp import from_llamacpp # pyright: ignore[reportUnknownVariableType] |
| 28 | + from outlines.models.mlxlm import from_mlxlm # pyright: ignore[reportUnknownVariableType] |
| 29 | + from outlines.models.sglang import from_sglang |
| 30 | + from outlines.models.tgi import from_tgi |
| 31 | + from outlines.models.transformers import from_transformers # pyright: ignore[reportUnknownVariableType] |
| 32 | + from outlines.models.vllm import from_vllm |
| 33 | + from outlines.types.dsl import JsonSchema |
| 34 | +except ImportError as _import_error: |
| 35 | + raise ImportError( |
| 36 | + 'Please install `outlines` to use the Outlines model, ' |
| 37 | + 'you can use the `outlines` optional group — `pip install "pydantic-ai-slim[outlines]"`' |
| 38 | + ) from _import_error |
| 39 | + |
| 40 | + |
| 41 | +@dataclass |
| 42 | +class OutlinesStreamedResponse(StreamedResponse): |
| 43 | + """Implementation of `StreamedResponse` for Outlines models.""" |
| 44 | + |
| 45 | + _model_name: str |
| 46 | + _response: AsyncIterable[str] |
| 47 | + _timestamp: datetime |
| 48 | + |
| 49 | + async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]: |
| 50 | + async for event in self._response: |
| 51 | + event = self._parts_manager.handle_text_delta(vendor_part_id='content', content=event) |
| 52 | + if event is not None: # pragma: no branch |
| 53 | + yield event |
| 54 | + |
| 55 | + @property |
| 56 | + def model_name(self) -> str: |
| 57 | + """Get the model name of the response.""" |
| 58 | + return self._model_name |
| 59 | + |
| 60 | + @property |
| 61 | + def timestamp(self) -> datetime: |
| 62 | + """Get the timestamp of the response.""" |
| 63 | + return self._timestamp |
| 64 | + |
| 65 | + |
| 66 | +@dataclass(init=False) |
| 67 | +class OutlinesModel(Model): |
| 68 | + """A model that relies on the Outlines library to run non API-based models.""" |
| 69 | + |
| 70 | + _system: str = field(default='outlines', repr=False) |
| 71 | + |
| 72 | + def __init__( |
| 73 | + self, |
| 74 | + model: OutlinesBaseModel | OutlinesAsyncBaseModel, |
| 75 | + model_name: str | None = None, |
| 76 | + *, |
| 77 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 78 | + profile: ModelProfileSpec | None = None, |
| 79 | + settings: ModelSettings | None = None, |
| 80 | + ): |
| 81 | + """Initialize an Outlines model. |
| 82 | +
|
| 83 | + Args: |
| 84 | + model: The Outlines model used for the model. |
| 85 | + model_name: The name of the model run by the provider. |
| 86 | + provider: The provider to use for OutlinesModel. Can be either the string 'outlines' or an |
| 87 | + instance of `Provider[OutlinesBaseModel]`. If not provided, the other parameters will be used. |
| 88 | + profile: The model profile to use. Defaults to a profile picked by the provider. |
| 89 | + settings: Default model settings for this model instance. |
| 90 | + """ |
| 91 | + self.model = model |
| 92 | + self._model_name = model_name |
| 93 | + |
| 94 | + if isinstance(provider, str): |
| 95 | + provider = infer_provider(provider) |
| 96 | + |
| 97 | + super().__init__(settings=settings, profile=profile or provider.model_profile) |
| 98 | + |
| 99 | + @classmethod |
| 100 | + def transformers( |
| 101 | + cls, |
| 102 | + hf_model: Any, |
| 103 | + hf_tokenizer: Any, |
| 104 | + *, |
| 105 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 106 | + profile: ModelProfileSpec | None = None, |
| 107 | + settings: ModelSettings | None = None, |
| 108 | + ): |
| 109 | + outlines_model: OutlinesBaseModel = from_transformers(hf_model, hf_tokenizer) |
| 110 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 111 | + |
| 112 | + @classmethod |
| 113 | + def llama_cpp( |
| 114 | + cls, |
| 115 | + llama_model: Any, |
| 116 | + *, |
| 117 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 118 | + profile: ModelProfileSpec | None = None, |
| 119 | + settings: ModelSettings | None = None, |
| 120 | + ): |
| 121 | + outlines_model: OutlinesBaseModel = from_llamacpp(llama_model) |
| 122 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 123 | + |
| 124 | + @classmethod |
| 125 | + def mlxlm( |
| 126 | + cls, |
| 127 | + mlx_model: Any, |
| 128 | + mlx_tokenizer: Any, |
| 129 | + *, |
| 130 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 131 | + profile: ModelProfileSpec | None = None, |
| 132 | + settings: ModelSettings | None = None, |
| 133 | + ): |
| 134 | + outlines_model: OutlinesBaseModel = from_mlxlm(mlx_model, mlx_tokenizer) |
| 135 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 136 | + |
| 137 | + @classmethod |
| 138 | + def tgi( |
| 139 | + cls, |
| 140 | + client: Any, |
| 141 | + *, |
| 142 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 143 | + profile: ModelProfileSpec | None = None, |
| 144 | + settings: ModelSettings | None = None, |
| 145 | + ): |
| 146 | + outlines_model: OutlinesBaseModel | OutlinesAsyncBaseModel = from_tgi(client) |
| 147 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 148 | + |
| 149 | + @classmethod |
| 150 | + def sglang( |
| 151 | + cls, |
| 152 | + client: Any, |
| 153 | + model_name: str, |
| 154 | + *, |
| 155 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 156 | + profile: ModelProfileSpec | None = None, |
| 157 | + settings: ModelSettings | None = None, |
| 158 | + ): |
| 159 | + outlines_model: OutlinesBaseModel | OutlinesAsyncBaseModel = from_sglang(client, model_name) |
| 160 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 161 | + |
| 162 | + @classmethod |
| 163 | + def vllm( |
| 164 | + cls, |
| 165 | + client: Any, |
| 166 | + model_name: str, |
| 167 | + *, |
| 168 | + provider: Literal['outlines'] | Provider[OutlinesBaseModel] = 'outlines', |
| 169 | + profile: ModelProfileSpec | None = None, |
| 170 | + settings: ModelSettings | None = None, |
| 171 | + ): |
| 172 | + outlines_model: OutlinesBaseModel | OutlinesAsyncBaseModel = from_vllm(client, model_name) |
| 173 | + return cls(outlines_model, None, provider=provider, profile=profile, settings=settings) |
| 174 | + |
| 175 | + @property |
| 176 | + def model_name(self) -> str: |
| 177 | + return self._model_name or '' |
| 178 | + |
| 179 | + @property |
| 180 | + def system(self) -> str: |
| 181 | + return self._system |
| 182 | + |
| 183 | + async def request( |
| 184 | + self, |
| 185 | + messages: list[ModelMessage], |
| 186 | + model_settings: ModelSettings | None, |
| 187 | + model_request_parameters: ModelRequestParameters, |
| 188 | + ) -> ModelResponse: |
| 189 | + """Make a request to the model.""" |
| 190 | + prompt = self._format_prompt(messages) |
| 191 | + output_type = ( |
| 192 | + JsonSchema(model_request_parameters.output_object.json_schema) |
| 193 | + if model_request_parameters.output_object |
| 194 | + else None |
| 195 | + ) |
| 196 | + model_settings_dict = dict(model_settings) if model_settings else {} |
| 197 | + if isinstance(self.model, OutlinesAsyncBaseModel): |
| 198 | + response: str = await self.model(prompt, output_type, None, **model_settings_dict) |
| 199 | + else: |
| 200 | + response: str = self.model(prompt, output_type, None, **model_settings_dict) |
| 201 | + return self._process_response(response) |
| 202 | + |
| 203 | + @asynccontextmanager |
| 204 | + async def request_stream( |
| 205 | + self, |
| 206 | + messages: list[ModelMessage], |
| 207 | + model_settings: ModelSettings | None, |
| 208 | + model_request_parameters: ModelRequestParameters, |
| 209 | + run_context: RunContext[Any] | None = None, |
| 210 | + ) -> AsyncIterator[StreamedResponse]: |
| 211 | + prompt = self._format_prompt(messages) |
| 212 | + output_type = ( |
| 213 | + JsonSchema(model_request_parameters.output_object.json_schema) |
| 214 | + if model_request_parameters.output_object |
| 215 | + else None |
| 216 | + ) |
| 217 | + model_settings_dict = dict(model_settings) if model_settings else {} |
| 218 | + if isinstance(self.model, OutlinesAsyncBaseModel): |
| 219 | + response = self.model.stream(prompt, output_type, None, **model_settings_dict) |
| 220 | + async for chunk in response: |
| 221 | + yield chunk |
| 222 | + else: |
| 223 | + response = self.model.stream(prompt, output_type, None, **model_settings_dict) |
| 224 | + |
| 225 | + async def async_response(): |
| 226 | + for chunk in response: |
| 227 | + yield chunk |
| 228 | + |
| 229 | + yield await self._process_streamed_response(async_response(), model_request_parameters) |
| 230 | + |
| 231 | + def _format_prompt(self, messages: list[ModelMessage]) -> Chat: |
| 232 | + """Turn the model messages into an Outlines Chat instance.""" |
| 233 | + chat = Chat() |
| 234 | + for message in messages: |
| 235 | + if message.kind == 'request': |
| 236 | + for part in message.parts: |
| 237 | + if part.part_kind == 'system-prompt': |
| 238 | + chat.add_system_message(part.content) |
| 239 | + elif part.part_kind == 'user-prompt': |
| 240 | + chat.add_user_message(str(part.content)) |
| 241 | + elif message.kind == 'response': |
| 242 | + for part in message.parts: |
| 243 | + if part.part_kind == 'text': |
| 244 | + chat.add_assistant_message(str(part.content)) |
| 245 | + return chat |
| 246 | + |
| 247 | + def _process_response(self, response: str) -> ModelResponse: |
| 248 | + """Turn the Outlines text response into a Pydantic AI model response instance.""" |
| 249 | + return ModelResponse(parts=[TextPart(content=response)]) |
| 250 | + |
| 251 | + async def _process_streamed_response( |
| 252 | + self, response: AsyncIterable[str], model_request_parameters: ModelRequestParameters |
| 253 | + ) -> StreamedResponse: |
| 254 | + """Turn the Outlines text response into a Pydantic AI streamed response instance.""" |
| 255 | + peekable_response = _utils.PeekableAsyncStream(response) |
| 256 | + first_chunk = await peekable_response.peek() |
| 257 | + if isinstance(first_chunk, _utils.Unset): |
| 258 | + raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') # pragma: no cover |
| 259 | + |
| 260 | + timestamp = datetime.now(tz=timezone.utc) |
| 261 | + return OutlinesStreamedResponse( |
| 262 | + model_request_parameters=model_request_parameters, |
| 263 | + _model_name=self.model_name, |
| 264 | + _response=peekable_response, |
| 265 | + _timestamp=timestamp, |
| 266 | + ) |
0 commit comments