|
| 1 | +import time |
| 2 | + |
| 3 | +import sparse |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +I_ = 1000 |
| 8 | +J_ = 25 |
| 9 | +K_ = 1000 |
| 10 | +L_ = 100 |
| 11 | +DENSITY = 0.0001 |
| 12 | +ITERS = 3 |
| 13 | +rng = np.random.default_rng(0) |
| 14 | + |
| 15 | + |
| 16 | +def benchmark(func, info, args): |
| 17 | + print(info) |
| 18 | + start = time.time() |
| 19 | + for _ in range(ITERS): |
| 20 | + func(*args) |
| 21 | + elapsed = time.time() - start |
| 22 | + print(f"Took {elapsed / ITERS} s.\n") |
| 23 | + |
| 24 | + |
| 25 | +if __name__ == "__main__": |
| 26 | + print("MTTKRP Example:\n") |
| 27 | + |
| 28 | + B_sps = sparse.random((I_, K_, L_), density=DENSITY, random_state=rng) * 10 |
| 29 | + D_sps = rng.random((L_, J_)) * 10 |
| 30 | + C_sps = rng.random((K_, J_)) * 10 |
| 31 | + |
| 32 | + # Finch |
| 33 | + with sparse.Backend(backend=sparse.BackendType.Finch): |
| 34 | + B = sparse.asarray(B_sps.todense(), format="csf") |
| 35 | + D = sparse.asarray(np.array(D_sps, order="F")) |
| 36 | + C = sparse.asarray(np.array(C_sps, order="F")) |
| 37 | + |
| 38 | + @sparse.compiled |
| 39 | + def mttkrp_finch(B, D, C): |
| 40 | + return sparse.sum(B[:, :, :, None] * D[None, None, :, :] * C[None, :, None, :], axis=(1, 2)) |
| 41 | + |
| 42 | + # Compile |
| 43 | + result_finch = mttkrp_finch(B, D, C) |
| 44 | + assert sparse.nonzero(result_finch)[0].size > 5 |
| 45 | + # Benchmark |
| 46 | + benchmark(mttkrp_finch, info="Finch", args=[B, D, C]) |
| 47 | + |
| 48 | + # Numba |
| 49 | + with sparse.Backend(backend=sparse.BackendType.Numba): |
| 50 | + B = sparse.asarray(B_sps, format="gcxs") |
| 51 | + D = D_sps |
| 52 | + C = C_sps |
| 53 | + |
| 54 | + def mttkrp_numba(B, D, C): |
| 55 | + return sparse.sum(B[:, :, :, None] * D[None, None, :, :] * C[None, :, None, :], axis=(1, 2)) |
| 56 | + |
| 57 | + # Compile |
| 58 | + result_numba = mttkrp_numba(B, D, C) |
| 59 | + # Benchmark |
| 60 | + benchmark(mttkrp_numba, info="Numba", args=[B, D, C]) |
| 61 | + |
| 62 | + np.testing.assert_allclose(result_finch.todense(), result_numba.todense()) |
0 commit comments