Replies: 1 comment
-
I don't think TorchScript supports lazy parameters via model(x, edge_index) # Run a forward pass
model.conv1 = model.conv1.jittable()
model.conv2 = model.conv2.jittable()
model = torch.jit.script(model) |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
I am trying to convert my GraphSAGE model to JIT script version based this example. I always keep gettingUninitialized PArameters Weight error for
LazyOAram
HeteroData( user={ num_nodes=305171, x=[305171, 1153], y=[305171], train_mask=[305171], val_mask=[305171], test_mask=[305171] }, seller={ num_nodes=31375, x=[31375, 771], train_mask=[31375], val_mask=[31375], test_mask=[31375] }, (user, amount, seller)={ edge_index=[2, 349379] }, (user, date_of_txn, seller)={ edge_index=[2, 349379] }, (seller, rev_amount, user)={ edge_index=[2, 349379] }, (seller, rev_date_of_txn, user)={ edge_index=[2, 349379] } )
My module looks like this
`class GNN(torch.nn.Module):
def init(self, hidden_channels, out_channels):
super().init()
torch.manual_seed(1234567)
model = GNN(hidden_channels=512, out_channels=32)
model = to_hetero(model, data.metadata(), aggr='sum')
model.to(device)
model = torch.jit.script(model)
`
The error was
raise RuntimeError("'{}' has uninitialized parameters {}. Did you forget to run a forward pass?" .format(torch.typename(type(mod)), name))
Beta Was this translation helpful? Give feedback.
All reactions